已知f[0]=f[1]=1 f[2]=0 f[n]=f[n-1]+f[n-3] 求 f[0]~f[50]的最大值

已知f[0]=f[1]=1 f[2]=0 f[n]=f[n-1]+f[n-3] 求 f[0]~f[50]的最大值
   看到这个题目我的第一想法是利用递归 ,用了之后发现递归不出啊 百度了一下
发现高手原来是这么简单的 如下:
#include
using namespace std;

int main ()
{ int i,max=-1,a[50];a[0]=1;a[1]=1;a[2]=0;
for (i=3;i<50;i++)
{
         a[i]=a[i-1]-2*a[i-2]+a[i-3];
  if(a[i]>max) max=a[i];
}
cout<<max<<endl;
return 0;
}
好简单啊 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值