Learning Deconvolution Network for Semantic Segmentation

本文提出了一种新的语义分割算法——深度反卷积网络,通过结合反卷积和未池化层,解决了固定大小感受野带来的物体分割问题,能识别精细结构和不同尺度的目标。采用VGG-16作为基础网络,通过两阶段训练策略,先易后难,以提高网络性能。在推理过程中,对图像的每个候选区域进行分割并组合,实现语义分割。
摘要由CSDN通过智能技术生成

本文思想
对称反卷积网络
摘要
1. 提出新的语义分割算法:深度反卷积网络;
2. 在VGG-16卷积层上学习网络;
3. 反卷积组成:deconvolution and unpooling layers,识别逐像素的类别标签,并预测分割mask;
4. 将object proposal(edge box)送入训练后的网络,然后整幅图像是这些proposal的分割结果的组合,这样就可以解决物体太大或者太小所带来的分割问题;
5. deep deconvolution network 和候选区域级别的预测(proposal-wise predictio),改进了现存的基于FCN的方法.
6. 我们的算法能识别精细的结构以及不同尺度大小的目标
引言
CNN被广泛的应用在各种视觉识别问题,例如图像分类,物体检测,语义分割,视觉追踪,动作识别。现在开始应用在结构预测问题,例如语义分割,人体姿态估计等等。
开始基于CNN解决语义分割逐像素分类的问题,将现存的用于分类的CNN结构转换成FCN。对图像中的局部区域进行分类,获得粗糙的label map,然后执行反卷积(双线性插值),从而获得像素级别的标签。为了获得更精确的分割效果,可以利用CRF进行后处理。FCN的最大优势:输入整张图像,获得较快,准确的推理。
FCN缺点:
第一,感受野为固定大小;物体大于或小于感受野会被 fragmented or mislabeled,大物体,分割不连续;小物体被忽视,如下图所示.虽然FCN加入了skip architecturer,但是这并不是根本的解决方案,根本问题–详细的边界和语义;
这里写图片描述
第二,输入反卷积层的label map太粗糙,反卷积过程太简单,使得物体的细节信息丢失或被平滑;在J.Long的FCN论文

  • 9
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值