Rcnn->Sppnet->Fast Rcnn->Faster Rcnn->R-FCN->Yolo

本文介绍了目标检测技术的发展,从Rcnn开始,通过Selective Search生成候选框,再到Sppnet引入金字塔池化提高效率,接着Fast R-CNN优化了特征提取,Faster R-CNN引入RPN网络加速,R-FCN通过位置敏感池化减少计算,最后讨论了Yolo的损失函数设计,尤其关注小目标的检测。
摘要由CSDN通过智能技术生成

Rcnn流程:
(1) 使用Selective Search生成大约2000个候选框
(2) 将每个候选框送入CNN提取特征
(3) 将提取到的特征送入SVM分类

这里写图片描述

Selective Search:
(1) 使用一种过分割手段,将图像分割成小区域
(2) 查看现有小区域,合并可能性最高的两个区域。重复直到整张图像合并成一个区域位置
(3) 输出所有曾经存在过的区域,所谓候选区域

候选区域生成和后续步骤相对独立,实际可以使用任意算法进行。

合并规则

优先合并以下四种区域:
- 颜色(颜色直方图)相近的
- 纹理(梯度直方图)相近的
- 合并后总面积小的
- 合并后,总面积在其BBOX中所占比例大的

保证合并操作的尺度较为均匀,避免一个大区域陆续“吃掉”其他小区域。

例:设有区域a-b-c-d-e-f-g-h。较好的合并方式是:ab-cd-ef-gh -> abcd-efgh -> abcdefgh。
不好的合并方法是:ab-c-d-e-f-g-h ->abcd-e-f-g-h ->abcdef-gh -> abcdefgh。
保证合并后形状规则。
上述规则只涉及区域的颜色直方图、纹理直方图、面积和位置。合并后的区域特征可以直接由子区域特征计算而来,速度较快。

多样化与后处理

为尽可能不遗漏候选区域,上述操作在多个颜色空间中同时进行(RGB,HSV,Lab等)。在一个颜色空间中,使用上述四条规则的不同组合进行合并。所有颜色空间与所有规则的全部结果,在去除重复后,都作为候选区域输出。

Rcnn会对2000个候选框重复使用CNN提取特征,在实际应用时很耗时。

Sppnet:
CNN在接受图像输入时由于后面FC层需要固定长度的输入所以也需要将输入的图像归一到固定的大小,但是不管是crop或者wrap都会造成图像信息的缺失或者扭曲,这会导致最终的训练结果不好
这里写图片描述
Sppnet在最后一层conv和fc层之间添加了金字塔式池化层,金字塔式池化的size和stride都是根据feature map的大小而变化的,假设feature map的大小是x×x,池化有n×n个bins(即需要把feature map分成n×n块),则窗口尺寸为size=⌈x/n⌉,步长为str=⌊x/n⌋,参考下图
这里写图片描述
图中金字塔式池化有三层,分别是4×4,2×2,1×1,分别把feature map分为16,4,1块池化

Sppnet的训练有两种一种式single-size一种式multi-size,single-size使用归一的图像大小,而multi-size使用不同的图像大小,论文中multi-size的训练使用224×224,和180×180的大小,两种大小的图片仅是分辨率不同,实验证明multi-size对于尺度有更好的鲁棒性。

Sppnet从feature map到原图的映射
原文中说道,由于conv层和pool层的padding所以映射很复杂,为了简化映射,我们假定如果size=p我们的padding=⌊p/2⌋,在ZF模型中对于conv5中的点(x,y)映射回原图的感受野的中心(x’,y’)=(Sx,Sy),这里S是前面所有层的stride的乘积,那么从原图向conv5映射时,左上边界x’=⌊x/S⌋+1,右下边界x’=⌈x/S⌉-1,这里如果padding不是⌊p/2⌋的话,需要给x加上一个偏置,这里的映射可能并不是很精确,没关系我们还有边框回归。Sppnet相对于Rcnn速度提升很大,因为Sppnet不会重复用CNN提取特征,Sppnet提取整张图的特征,再利用映射找到原图中候选框在feature map中的位置。

RCNN
这里写图片描述
RCNN的所由计算都是不共享的,并且候选框用ss方法生成,所以速度最慢

SPPnet 和 fast rcnn
这里写图片描述
Sppnet和fast rcnn把候选框映射到最后一层conv层,所以前面的cnn是共享的只有后面的fc层是不共享的,速度比之RCNN更快

faster rcnn
这里写图片描述
faster rcnn相对于fast rcnn把ss换成rpn网络进一步加快了速度

R-FCN
这里写图片描述
考虑到faster rcnn的fc层依然很耗时,作者在fast rcnn前增加一个conv提取空间位置信息,把最后的fc层换位avg pooling,使R-FCN得速度大大提升,并且精度没有降低多少。

position-sensitive pooling:最后一层conv生成k*k*(c+1)通道的feature map,论文中k=3, 也就是把roi分成3*3的区域,分别是左上,左中,左右。。等等,每一个位置对应一个通道的feature map,c代表分类类别,所以一共3*3(9个不同的位置)*21(类别)个通道,pspooling对每一类的9个不同位置pooling输出一个3*3的feature map,一共21类所以输出21通道的3*3的feature map,再对每一个通道的feature map求均值转换为21维向量送入softmax分类

这里写图片描述

更新:关于YOLO损失函数的理解
在YOLO的损失函数中,w和h的平方误差都是按照 w h 来算的,这样在计算梯度的时候后在原有梯度上乘上 w h 的梯度也就是 12w12 12h12 当w和h小于0.25时 12w12 12h12 大于1也就是对于小目标来说我们更关注w和h的损失

本课程适合具有一定深度学习基础,希望发展为深度学习之计算机视觉方向的算法工程师和研发人员的同学们。基于深度学习的计算机视觉是目前人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习的计算机视觉的基本原理、核心算法和当前的领先技术,从而有望成为深度学习之计算机视觉方向的算法工程师和研发人员。本课程系统全面地讲述基于深度学习的计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和前沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。通过本课程的学习,学员可把握基于深度学习的计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习之计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。本课程分为上下两部分,其中上部包含课程的前五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值