求解x=a^b(mod m)的几种方法

本文介绍了如何解决大指数幂次模运算的问题,当b非常大时,不能使用逐次平方法。首先考虑m为素数的情况,利用费马小定理和欧拉公式简化问题。接着,当m为任意数时,通过分析a的幂次模m的循环起始点和循环长度,转换大幂次为小幂次求解。最后,讨论了如何求解a的素数分解形式的幂次模m的解,并给出循环起始点和循环长度的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

hint:这里所有的形如ab的都是表示a^b(a的b次方)




求解x=a^b(mod m)

本文致力于解决如下问题:求解x≡ab(mod m),其中a,b,m都是正整数。

如果b足够小,则可直接用逐次平方法求解,如果你不知道逐次平方法,可以先看一下这个方法。所以这里假设b足够大(这不是说是一个64位整数,而是可以上百上千位的一个数),大到逐次平方法也已不足以快速出解。

用素数探路的思想,先假设m是素数,那么要么a与m互素,要么m|a。前者可利用费马小定理,令b = k(m-1) + b′,其中0≤b′<m-1,则有ab≡ak(m-1)+b′≡ab′(mod m)。之后可用逐次平方法快速求解。若m|a,结果显然为0。

现在考虑要求m可以是任意数的情况。同样,若a与m互素,由上边我们可联想到欧拉公式,利用欧拉公式求解。令b = kΦ(m) + b′,其中0≤b′<Φ(m),则有ab≡akΦ(m)+b′≡ab′(mod m),之后用逐次平方法快速求解。如果a与m不互素,即gcd(a,m)>1,这种情况下应该怎么做?

注意到b如此大,而模m的不同的数最多只有m个,显而易见的,ab一定和某个很小的指数ab′模m同余,如果找到这个小的指数,就可以利用逐次平方法求解。考虑如下序列:

a0, a1, ..., am(mod m)

由鸽巢原理可知,必有一个最小的r和一个最小的s,使得ar≡ar+s(mod m),其中r+s≤m。若找到这样的r和s,那么显然有ax≡akr+x0≡akr+s+x0≡ax+s(mod m),其中x是大于或等于r的任意数。要注意的是,对任意大于或等于r的x,不存在更小的数s1,使得ax≡ax+s1(mod m)。假如有更小的这样的数s1存在,不妨设x = r+ks,因为若不这样,可以令x1 = x + x′ = r + ks,同余式两边同时乘以ax′,就变成ax1≡ax1+s1(mod m),而x1 = r+ks。所以有ax≡ar+ks≡ar≡ar+s1(mod m),其中s1<s,这与我们找到的s是最小的相矛盾,所以这样的s1是不存在的。上面的论述给出以下的一个事实:序列

a0, a1, ..., ak, ...(mod m)

实际上是这样一个序列

a0, a1, ..., ar, ar+1, ..., ar+s-1, ar, ar+1, ...(mod m

<think>嗯,这个问题看起来有点挑战性。让我仔细看看题目要求。题目是说,给定Q个查询,每个查询给出n和r,需要计算f(n, r) = C(n, r) * (n - r)!,然后对mod。然后要考虑不同mod的情况,尤其是mod可能不是质数的情况。那怎么高效处理这个问题呢? 首先,我得分析f(n, r)的表达式。C(n, r)是组合数,等于n!/(r! * (n - r)!))。所以当把这个乘以(n - r)!的时候,结果应该是n!/(r!)。因为组合数的公式里的分母有(n - r)!,乘以这个的话就消去了。所以f(n, r) = n!/(r! )。哦,对啊,这样简化之后式子变得简单多了。那这样的话,计算每个查询的结果其实就是n!除以r!,然后取。这一步可能对吗?比如示例中的第一个输入,5选3的组合数是10,乘以(5-3)!也就是2!等于2,所以10*2=20,结果正确。而根据简化后的式子,5!/(3!)=120/6=20,确实正确。第二个例子,n=2,r=1,2!/(1!)=2,正确。第三个例子,8!/(4!)=40320/24=1680,取1007的话,1680 mod1007等于673,和示例一致。这说明我的简化是正确的。那问题就转化为如何快速计算n! / r! mod mod的值。 那现在问题变成,如何高效计算n!/(r!) mod mod的值。这里要注意的是,mod可能不是质数,所以不能直接使用逆元的方法,因为只有当mod和分母互质的时候,才能找到逆元。而当mod不是质数的时候,r!可能和mod不互质,这时候求逆元可能不存在。那这个时候该怎么处理呢? 例如,当mod是一个合数,比如mod=4,而r!是2的时候,这时候2和4的最大公约数是2,不是1,所以无法找到逆元。这时候原来的方法可能失效。所以常规的组合数计算方式在这种情况下可能不适用。所以需要另外的思路。 那这时候我们需要将n! / r! 转化为n*(n-1)*…*(r+1)。也就是计算从r+1到n的连续乘积。这样可能更直接。例如,当n >= r时,n! / r!等于(r+1)*(r+2)*…*n。这样,如果我们可以预先计算前缀积的话,就可以快速得到这个乘积的值。然后对这个乘积取mod。那这样的话,这个问题可以转化为预处理每个数到另一个数的区间乘积,取后的结果。 那么问题转化为,如何预处理这些区间积,并快速回答每个查询。对于n和r来说,当r <=n时,结果是product(r+1到n) mod mod。那如何高效计算这个? 考虑到n和q的范围都是1e5,所以预处理每个r到n的乘积是不可行的,因为可能有很多不同的n和r的组合。所以需要一个方法,能够在O(1)或者O(log n)的时间内回答每个查询。 这时候,可以想到预处理阶乘数组,然后对于每个查询,阶乘数组保存到每个数的阶乘mod后的结果。然后,n! / r! mod mod等于 (fact[n] * inv_fact[r]) mod mod。但这里的inv_fact[r]只有当r!和mod互质时才存在逆元。否则,这个方法不可行。 那这时候,我们需要处理不互质的情况。这时候,可能需要将分解质因数,然后单独处理每个质因数的指数,但这种方法可能比较复杂,尤其是在mod较大到1e14的时候,分解质因数会很困难。 或者,是否可以将n! / r!的乘积直接计算出来,每次查询的时候,直接连乘从r+1到n的数,并在这个过程中取。这样,每个查询的时间复杂度是O(n - r),但最坏情况下,比如n=1e5,r=0,那这样的时间是O(1e5),而q是1e5次的话,总时间是1e10,这显然会超时。 所以这种方法不可行。那必须寻找一种更高效的方法。 那这时候,问题可能转化为如何预处理这些区间积的前缀积,从而可以快速查询任意区间的乘积mod的值。例如,可以预处理一个数组prefix[i]表示前i个数的乘积mod。然后区间[r+1, n]的乘积等于prefix[n] / prefix[r]。但同样,除法在运算中需要逆元,而这里同样存在逆元可能不存在的问题。 那这时候,是否有其他方法? 这里的关键是,当mod不是质数时,如何处理除法的问题。可能需要将mod分解质因数,并将数值分解为这些质因数的乘积,然后对于每个查询中的乘积部分,统计这些质因数的指数,剩下的部分则可以与互质,从而可以计算逆元。这种方法可能需要中国剩余定理合并结果,但实现起来比较复杂,尤其是当mod很大时分解质因数可能很耗时。 或者,是否可以将问题转化为直接计算连乘积,而不管逆元的问题。比如,如果n和r的范围是1e5的话,那么每次查询最多需要计算1e5次乘法。但这样的话,总时间是1e10,这显然会超时。 那显然,这必须找到一个预处理的方法。那有没有办法预处理前缀积,然后在查询的时候直接得到结果? 比如,预处理一个数组prod,其中prod[i]表示前i个数的乘积mod。然后,对于查询n和r,区间r+1到n的乘积等于prod[n] / prod[r]。但是,这需要处理除法的问题。如果mod是质数,且prod[r]和mod互质,那么可以用逆元。但mod可能不是质数,所以这种方法可能行不通。 那这时候,有没有其他方法?比如,当计算前缀积的时候,将结果保存为每个数的前缀积mod的值。然后,当需要计算r+1到n的乘积时,可以计算prod[n] * inv(prod[r]) mod mod,其中inv(x)是x关于mod的逆元。但是如果prod[r]和mod不互质,那么逆元不存在,此时这种方法就无法使用。 所以在这种情况下,当mod和prod[r]不互质时,如何处理? 此时可能需要将mod分解质因数,然后将每个数分解成这些质因数的部分和其他互质的部分。例如,假设mod = p1^a1 * p2^a2 * ... * pk^ak。那么,每个数x可以分解为 x = p1^b1 * p2^b2 * ... * pk^bk * rest,其中rest与mod互质。这样,前缀积可以分解为各个质因数的指数和rest部分的乘积。然后,计算区间积的时候,可以分别处理各个质因数的指数和rest部分的乘积。最后,将这些部分合并起来得到结果mod的值。 这种方法虽然可行,但实现起来较为复杂,尤其是当mod很大时,分解质因数可能需要较高的时间复杂度。例如,当mod是1e14时,分解质因数可能需要遍历到sqrt(1e14)=1e7,这在预处理时可能比较耗时。不过,在本题中,mod的分解可能只需要进行一次,所以对于每个测试用例来说,分解的时间可能可以接受。 那这个思路的大体步骤是: 1. 分解mod的质因数,得到mod = p1^a1 * p2^a2 * ... * pk^ak. 2. 预处理每个数的质因数分解,记录每个数对每个质因数p的指数,以及剩余的部分(即除去所有p因子后的数)。 3. 预处理前缀的乘积的各个质因数的指数总和,以及剩余部分的乘积mod。 4. 对于每个查询,计算区间[r+1, n]的乘积。这需要: a. 计算该区间内各个质因数的总指数是否超过mod中的对应指数。如果超过的话,那么整个乘积会有mod因子,结果为0。否则,计算剩余部分的乘积,乘以各个质因数的相应次方,然后mod。 b. 如果所有质因数的总指数都不超过mod中的对应指数,那么剩余部分的乘积乘以各个质因数的指数次方,然后mod。 或者,可能我的思路有误,需要更仔细的分析。 不过,这个问题的难点在于当mod不是质数的时候如何处理分母的逆元问题。而这里的分母是r!,但根据之前的分析,题目中的f(n, r)等于n! / r!。所以,问题转化为计算n! / r! mod mod的值,其中mod可能不是质数。 这个时候,我们可以将n!和r!分别分解为mod的质因数以及剩余部分。然后,比较各个质因数在n!和r!中的指数之差是否大于等于mod中的指数。如果是的话,那么整个乘积会被mod整除,结果为0。否则,可以将质因数的指数之差相乘,再乘以剩余部分的逆元(如果剩余部分与mod的剩余部分互质的话)。 或者,另一个思路是,将n! / r! 分解为各个质因数的指数,并计算mod后的值。例如,当mod分解为p1^a1 * p2^a2 * ... * pk^ak,那么n! / r! mod mod等于各个质因数的指数在n!中的总次数减去r!中的总次数后的结果,如果对于某个pi,其总次数在n!中的减去r!后的次数小于0,那么结果必然为0?或者这可能需要更详细的分析。 或者,我们可以将问题分解到mod的各个质因数的幂,然后通过中国剩余定理合并结果。例如,当mod是多个质因数的幂的乘积时,我们可以分别计算n! / r! mod p^a,然后将结果合并得到最终答案。这可能是一个可行的方法。 例如,假设mod = p1^a1 * p2^a2 * ... * pk^ak,其中各pi是质数且互不相同。那么,根据中国剩余定理,我们可以分别计算n! / r! mod p1^a1,mod p2^a2,…,然后将这些结果合并得到mod的余数。 对于每个质因数p^a来说,我们需要计算n! / r! mod p^a。这可能需要处理阶乘中p的因子,然后将剩下的部分取。 例如,对于计算n! mod p^a,我们可以使用Legendre公式计算n!中p的指数v,然后n! = p^v * m,其中m与p互质。所以,n! / r! = p^{v_n - v_r} * (m_n / m_r)。这里,m_n是n!除去所有p因子后的结果,同样m_r是r!除去所有p因子后的结果。所以,当计算这个比值的时候,如果v_n - v_r >= a,那么整个结果mod p^a为0。否则,我们需要计算(m_n * inv(m_r)) mod p^a,然后乘以 p^{v_n - v_r},最后取。 这可能比较复杂,但可以分步骤处理: 对于每个质因数p^a: 1. 计算n!中p的指数v_n,r!中p的指数v_r。若v_n - v_r >= a,则n! / r! mod p^a =0. 2. 否则,计算m_n是n!除去所有p因子后的乘积 mod p^a. 计算m_r是r!除去所有p因子后的乘积 mod p^a. 计算m = m_n * inverse(m_r) mod p^a. 然后,乘以p^{v_n - v_r},再mod p^a. 然后将所有这些结果用中国剩余定理合并得到最终结果。 这似乎是一个可行的方案。但实现起来可能比较繁琐,尤其是当mod分解质因数后的各个p^a都需要处理,并且每个处理需要多个步骤的情况下。 例如,对于mod=1007,先分解质因数。1007=19*53。所以需要分别计算n! / r! mod 19和mod53,然后用中国剩余定理合并得到结果。 那对于每个质数p,我们需要处理p^a的情况。例如,假设mod的分解是多个不同质数的幂的乘积。 那么,问题的步骤可以分解为: 1. 预处理mod的质因数分解。 2. 对于每个质因数p的幂次a,预处理每个数的阶乘中p的指数,以及除去p后的乘积p^a的值。 3. 对于每个查询(n, r),计算每个质因数p的贡献: a. 计算v = (n!中p的指数) - (r!中p的指数). b. 如果v >= a,则该质因数p对应的余数为0. c. 否则,计算m_n是n!除去p后的乘积 mod p^a. m_r是r!除去p后的乘积 mod p^a. 计算m = m_n * inverse(m_r, p^a) mod p^a. 余数为 (m * p^v) mod p^a. 4. 将各个质因数的余数通过中国剩余定理合并,得到最终结果。 这似乎可行,但实现起来比较困难,特别是当mod的质因数较多时。不过,在本题中,mod的范围是1e14,所以分解后的质因数数目应该不会太多,可能只有几个。 接下来,我们需要考虑如何分解mod的质因数。例如,对于给定的mod,如何快速分解为质因数的乘积。这可能需要试除法,或者更高效的算法。但对于mod=1e14来说,试除法的最坏情况是当mod是一个大质数的平方时,可能需要遍历到1e7,这在时间上是可行的,因为每个测试用例只需要分解一次mod。 接下来,预处理每个数的阶乘中每个质因数p的指数,以及除去p后的乘积p^a的值。例如,对于每个质因数p,我们需要预处理一个数组count_p,其中count_p[i]表示i!中p的指数。同样,另一个数组fact_p,其中fact_p[i]表示i!除去所有p因子后的乘积p^a。 对于count_p的计算,可以使用Legendre公式:对于i!中的p的指数,等于sum_{k=1}^∞ floor(i/p^k). 这在预处理时可以逐次累加。 对于fact_p数组的计算,可以逐步处理每个数,将其中p的因子除去,然后乘以当前的数,保存到fact_p[i]中。例如: fact_p[0] = 1. 对于i >=1: temp = i. while temp % p ==0: temp /= p. fact_p[i] = (fact_p[i-1] * temp) % (p^a). 这样,fact_p[i]就是i!除去所有p因子后的乘积p^a的值。 这样,预处理每个质因数p对应的count_p和fact_p数组,可以在O(n)的时间完成,每个质因数需要O(n)的时间。对于多个质因数,总的时间是O(kn),其中k是质因数的数目。对于n=1e5来说,这可能可行。 然后,处理每个查询时,对于每个质因数p,计算对应的余数,并将所有余数合并得到最终结果。 这需要实现中国剩余定理。例如,给定多个同余方程x ≡ a_i mod m_i,其中m_i两两互质,则x ≡ sum (a_i * M_i * inv(M_i, m_i)) mod M,其中M是各m_i的乘积,M_i = M/m_i。但当m_i不互质时,中国剩余定理可能无法直接应用,但在这道题中,mod的质因数分解中的各个p^a是互质的,所以可以应用中国剩余定理。 现在,总结整个步骤: 步骤一:分解mod的质因数,得到mod = p1^a1 * p2^a2 * ... * pk^ak. 步骤二:预处理每个质因数p对应的count_p数组(存储i!中p的指数)和fact_p数组(存储i!除去p后的乘积 mod p^a)。 步骤三:对于每个查询(n, r): a. 如果r >n,结果为0(但题目中保证1<=r<=n)。 b. 否则,对于每个质因数p,计算: i. v_n = count_p[n], v_r = count_p[r] ii. v = v_n - v_r. iii. 如果v >= a_i,则余数对于该质因数的部分是0. iv. 否则,计算m_n = fact_p[n], m_r = fact_p[r] inv = modular_inverse(m_r, p^a_i) m = (m_n * inv) % (p^a_i) res_p = (m * pow(p, v, p^a_i)) % (p^a_i) v. 保存res_p和mod的因子p^a_i. c. 使用中国剩余定理将所有res_p合并,得到最终的余数。 步骤四:将合并后的结果输出。 现在,需要处理的问题包括: 1. 如何分解mod为质因数的乘积? 2. 如何高效预处理count_p和fact_p数组? 3. 如何计算逆元?在步骤三.b.iv中,当m_r和p^a_i是否互质? 在fact_p[r]是r!除去所有p因子后的乘积,所以m_r mod p^a_i的值与p互质吗? 是的。因为fact_p[r]是r!除去所有p因子后的结果,所以其中不含p的因子,所以m_r和p是互质的。而p^a_i的数中的质因数只有p,所以m_r和p^a_i是互质的。因此,m_r在p^a_i下存在逆元。 这样,步骤三.b.iv中的inv是可以计算的。 那现在,如何处理步骤三中的各个部分? 现在,分解mod的质因数可能是一个挑战。例如,mod的范围是1e14,那么试除法的复杂度是O(sqrt(mod)),即1e7次循环,这可能在时间上是可行的,特别是当mod的质因数分解比较快的时候。或者,使用更高效的分解算法,如Pollard's Rho算法。但对于编程比赛来说,试除法可能足够,尤其是当mod的数值不是特别大的时候。 例如,对于mod=1e14,最大的质因数可能是sqrt(1e14)=1e7。所以试除法可以处理。但是,当mod是一个大质数的时候,试除法会非常慢。例如,mod=1e14+31可能是一个质数,此时试除法需要遍历到sqrt(mod)≈1e7次循环。这在时间上可能允许,因为每个测试用例只需要处理一次分解。 所以,如何编写质因数分解的代码? 试除法的大体步骤: 对于给定的mod,从2到sqrt(mod)遍历可能的因数。当找到一个因数p时,将其分解出来,直到mod变成1。剩下的可能是1或者一个质数。 例如: def factorize(n): factors = {} i =2 while i*i <=n: while n %i ==0: factors[i] = factors.get(i,0)+1 n = n//i i +=1 if n>1: factors[n] =1 return factors 这样,可以得到所有质因数的幂次。例如,mod=1007分解为19和53。 然后,对于每个质因数p和它的幂次a,保存为列表中的项,例如primes = [(p1, a1), (p2, a2), ... ] 然后,对于每个质因数p和a,预处理count_p数组和fact_p数组。 接下来,处理每个查询: 对于每个查询中的n和r,我们需要计算对于每个(p, a),对应的余数。然后将这些余数合并。 中国剩余定理的合并方法: 假设有多个同余条件x ≡ a1 mod m1,x ≡a2 mod m2,...,其中各个m_i互质。那么,最终的解x ≡ sum (a_i * t_i * M_i) mod M,其中M是各个m_i的乘积,M_i = M/m_i,t_i是M_i的逆元m_i。 例如,对于两个数m1和m2,互质的情况下,解x满足x ≡ a1 mod m1和x ≡a2 mod m2。解为x = a1 * m2 * inv(m2, m1) + a2 * m1 * inv(m1, m2) mod m1*m2。 在代码中,可以逐个合并余数: current_remainder = 0 current_mod = 1 for (p, a) in primes: m = p^a rem = res_p # 合并current_remainder和rem mod m # 寻找x ≡ current_remainder mod current_mod # x ≡ rem mod m # 因为 current_mod和m是互质的(因为 mod的分解是各质因数的幂的乘积) new_mod = current_mod * m # 使用扩展欧几里得算法找到解 # 构造x = current_remainder + k * current_mod # 代入第二个方程,得到 current_remainder + k * current_mod ≡ rem mod m # => k * current_mod(rem - current_remainder) mod m # 因为 current_mod和m互质,所以k ≡ (rem - current_remainder) * inv(current_mod, m) mod m d = gcd(current_mod, m) assert d ==1 k = ( (rem - current_remainder) * modinv(current_mod, m) ) % m new_remainder = current_remainder + k * current_mod current_remainder = new_remainder % new_mod current_mod = new_mod 这样,逐个合并余数,最终得到current_remainder即为所求。 现在,关键的问题是,如何高效实现这些步骤,特别是对于大范围的n和q的情况。 现在,回到问题中给出的数据范围: Q和n的范围都是1e5。预处理每个质因数对应的count_p和fact_p数组,每个数组需要1e5的空间。假设mod分解为k个质因数,那么总的空间是O(k*1e5)。当k较小的时候,这可行。 例如,假设mod分解为两个质因数,那么总的空间是2*1e5*2=4e5,这在内存中是允许的。 然后,预处理每个质因数的时间是O(k*1e5)。对于k=2来说,这是2e5次操作,可行。 那现在,如何编写代码? 可能的步骤: 1. 分解mod的质因数,得到primes列表。 2. 对于每个质因数p和对应的a,预处理count_p数组和fact_p数组。 a. count_p数组:count_p[i] = i!中p的指数。 计算方法是,对于每个i,count_p[i] = count_p[i-1] + number_of_p_in_i. b. number_of_p_in_i:计算i能被p整除的次数。 例如,对于i=0,count_p[0]=0。i=1时,如果p>1,则count_p[1]=0。i=2,假设p=2,则count_p[2] = count_p[1]+1=1. 更高效的是,对于每个i,count_p[i] = count_p[i-1] + sum_{k=1}^∞ floor(i/p^k)。但这样预处理的话,对于每个i,计算次数可能较多。例如,可以使用循环:对于每个i,计算其中有多少个p因子,加到count_p[i]中。 另一种方式是,count_p[i] = count_p[i-1] + count_p_in_number(i). count_p_in_number(i)是计算i中包含多少个p的因子。例如,对于i,不断除以p,直到不能被整除,统计次数。 这样,预处理count_p数组的时间是O(n * log_p i). 对于n=1e5,这可能可行。 c. fact_p数组:fact_p[i] = (i!除去所有p因子后的乘积) mod p^a. 初始化fact_p[0] =1. 对于i从1到n: temp = i while temp %p ==0: temp //=p fact_p[i] = (fact_p[i-1] * temp) % p^a 3. 对于每个查询: a. 对于每个(p, a): 计算v_n = count_p[n] v_r = count_p[r] v = v_n - v_r if v <0: 不可能,因为r <=n,所以v >=0 ? (因为count_p[r] <= count_p[n]) 所以,如果v >=a:余数为0. else: m_n = fact_p[n] m_r = fact_p[r] inv = modinv(m_r, p^a) m = (m_n * inv) % (p^a) res_p = (m * pow(p, v, p^a)) % (p^a) 将res_p和p^a加入余数列表。 b. 合并所有余数,得到最终的答案。 现在,需要处理的问题包括: 如何快速计算pow(p, v, p^a)? 当计算pow(p, v, p^a)时,可以直接用内置的快速幂函数。例如,在Python中,pow(p, v, p**a)。 另外,如何处理modinv?即,计算m_r的逆元p^a。在Python中,可以使用pow函数,当数和底数互质时,第三个参数可以是数。例如,inv = pow(m_r, -1, p^a). 但需要确保m_r和p^a互质。因为m_r是r!除去所有p因子后的乘积,所以其中没有p的因子,所以m_r和p互质,因此和p^a也互质。因此,逆元存在。 现在,举个例子,假设mod=1007=19*53。对于查询n=5,r=3: f(n, r) =5!/(3! )= 120/6=20. mod=1007,余数是20 mod1007=20. 处理每个质因数: 对于p=19,a=1: p^a=19. v_n = count_p[5] = floor(5/19) + floor(5/19^2)+...=0. 所以v=0-0=0. m_n = fact_p[5] =5! /19的因子=5!,因为5<19,所以fact_p[5]=5! mod19=120 mod19=120-6*19=6. m_r=3! mod19=6 mod19=6. inv=6的逆元19。因为6*16=96 mod19=96-5*19=96-95=1 →逆元是16. m=6 *16 mod19=96 mod19=96-5*19=1 →1. res_p=1 *19^0 mod19=1. 同理,对于p=53,a=1: v=0. m_n=5! mod53=120 mod53=120-2*53=14. m_r=3! mod53=6. inv=6的逆元53。找x使得6x ≡1 mod53。用扩展欧几里得算法: 53 = 8*6 +5 6=1*5 +1 5=5*1 +0 →gcd=1. 回代: 1=6-1*5 5=53-8*6 →代入得: 1=6 -1*(53-8*6) =9*6 -53 →所以x=9 mod53. 所以,inv=9. m=14 *9 mod53=126 mod53=126-2*53=20. res_p=20 *1=20 mod53=20. 现在,合并这两个余数: x ≡1 mod19 x ≡20 mod53 求解: 设x=19k +1. 代入第二个方程:19k +1 ≡20 mod53 →19k ≡19 mod53 →k ≡1 mod53/ gcd(19,53)=1. 所以k=1 +53t. x=19*(1+53t) +1 =20 +1007t →mod1007,x=20. 正确。 这样,整个步骤是正确的。 现在,如何处理中国剩余定理的合并? 对于多个数的情况,需要逐个合并。例如,假设有三个质因数,那么先合并前两个,得到一个新的数和余数,再与第三个合并。 在代码中,这可以通过循环实现。例如: current_remainder =0 current_mod =1 for (p, a) in primes: m = p**a rem = res_p # 现在需要将x ≡ current_remainder mod current_mod 和x ≡ rem mod m合并 # 因为 current_mod和m是互质的 # 使用中国剩余定理合并 # 解方程: x = a mod m1 # x = b mod m2 # 合并后的解为 x = a + k*m1 # 代入第二个方程: a +k*m1 ≡b mod m2 →k*m1 ≡ (b-a) mod m2 # k ≡ (b -a) * inv(m1, m2) mod m2 # 因为 m1和m2互质,所以inv存在 # 然后,解k的最小非负解,之后合并后的数是m1*m2 # 在代码中: d, x, y = extended_gcd(current_mod, m) # 因为 current_mod和m互质,所以d=1 # 所以解为 k = (rem - current_remainder) * x % m k = (rem - current_remainder) % m k = k * x % m new_remainder = current_remainder + k * current_mod new_mod = current_mod * m current_remainder = new_remainder % new_mod current_mod = new_mod 这样,合并后的current_remainder就是解。 现在,如何处理扩展欧几里得算法? 实现一个函数来求解ax + by = gcd(a, b)的解,并返回gcd和x、y。 例如,在Python中: def extended_gcd(a, b): if b ==0: return (a, 1, 0) else: g, x, y = extended_gcd(b, a %b) return (g, y, x - (a//b)*y) 这样,可以得到x和y,使得 ax + by =g. 当我们需要求解k*m1 ≡ (b -a) mod m2时,即 m1 *k ≡ (b-a) mod m2。因为 m1和m2互质,所以x是m1的逆元m2。所以,k0 = (b-a)*x mod m2. 综上,整个算法的大体步骤已经明确。 现在,需要考虑在Python中的实现,包括: 1. 分解mod的质因数。 2. 预处理每个质因数p的count_p和fact_p数组。 3. 处理每个查询,并为每个质因数计算余数。 4. 合并所有余数得到结果。 现在,编写代码的大体结构: 首先,读取输入Q和mod,然后读取Q个查询的n和r. 分解mod的质因数,得到primes列表。 对于每个质因数p, a: 预处理count_p数组和fact_p数组。 预处理所有质因数之后,处理每个查询: 对于每个查询的n和r: res =0 对每个质因数(p, a): v_n = count_p[n] v_r = count_p[r] v = v_n -v_r pa = p**a if v >=a: rem =0 else: m_n = fact_p[n] m_r = fact_p[r] inv = pow(m_r, -1, pa) m = (m_n * inv) % pa m = m * pow(p, v, pa) rem = m % pa # 将rem和pa加入中国剩余定理的处理 使用中国剩余定理合并所有rem和pa,得到最终的余数。 输出该余数。 现在,需要注意的细节: 1. 如何分解mod的质因数? 试除法可能不够高效,但可以处理mod=1e14的情况。例如,在Python中,试除法处理mod=1e14可能需要遍历到1e7次。这在Python中可能比较慢,但或许可以通过优化来加快速度。或者,使用更高效的质因数分解算法,如Pollard's Rho算法。 但由于本题中mod的范围可能很大,所以需要高效的分解方法。但在编程竞赛中,可能试除法足够,因为题目中的测试数据可能不会包含非常大的质因数。或者,可能需要优化试除法的实现,例如只检查奇数因子,或者提前处理小质数。 例如,分解质因数的函数可以这样写: def factor(n): factors = {} while n %2 ==0: factors[2] = factors.get(2, 0) +1 n = n//2 i=3 while i*i <=n: while n%i ==0: factors[i] = factors.get(i,0)+1 n =n//i i +=2 if n>1: factors[n] =1 return factors 这样,处理偶数因子后,只检查奇数因子。这可能节省时间。 这样,分解mod的时间可能足够。 2. 预处理count_p数组: 对于每个质因数p,预处理count_p数组。其中count_p[i] = i!中p的指数。 例如,对于p=2,计算count_p[5] = 5//2 +5//4 +5//8 +...=2+1+0=3. 这可以通过递推的方式计算: count_p[0] =0 for i in 1到n: count_p[i] = count_p[i-1] + count_p_in_i(i) 其中,count_p_in_i(i)是计算i中包含的p因子的个数。 例如,对于i,我们计算它能被p整除的次数: def count_p_in_i(i, p): cnt=0 while i %p ==0: cnt +=1 i = i//p return cnt 这样,对于每个i,预处理count_p数组的时间是O(log_p i). 对于n=1e5,每个质因数需要1e5次这样的计算,可能可以接受。 3. 预处理fact_p数组: 对于每个质因数p和对应的a,预处理fact_p数组。其中,fact_p[i] = i!除去p因子后的乘积 mod p^a. 例如,对于i=5,p=2,则5!中的2因子被除去后的乘积是1*3*5*...等。 在预处理时,对于每个i,我们需要除去其中的p因子,然后乘到fact_p数组中。 例如: pa = p**a fact_p = [1]*(n+1) for i in 1到n: temp = i while temp %p ==0: temp = temp//p fact_p[i] = (fact_p[i-1] * temp) % pa 这样,预处理每个质因数的fact_p数组的时间是O(n),可以接受。 综上,整个算法是可行的。 现在,考虑如何处理数非常大的情况。例如,当mod=1e14时,分解质因数可能得到多个大的质因数。例如,mod=1e14= (2^14) * (5^14). 这时,分解后的primes列表为 [(2,14), (5,14)]. 然后,预处理每个质因数的count_p和fact_p数组。对于每个质因数p=2和5,预处理对应的count_p数组和fact_p数组。 在处理查询时,计算每个质因数的余数,然后合并。 现在,编写代码的大体框架: 读取Q和mod. 分解mod得到primes = list of (p, a) pairs. 预处理每个质因数p的count_p和fact_p数组. 对于每个查询n, r: 如果r >n: 输出0(但题目保证r<=n) else: 收集每个质因数对应的余数,并合并. 输出合并后的结果. 在代码中,如何处理中国剩余定理的合并? 在Python中,可以逐个合并余数。例如: def crt(remainders, mods): x =0 m =1 for r, mi in zip(remainders, mods): d, p, q = extended_gcd(m, mi) if (r -x) %d !=0: return None # 无解,但在这里应该不可能出现 tmp = ( ( (r -x) //d * p ) % (mi //d) ) x += m * tmp m = m * mi //d x %=m return x 但这里需要注意,mods必须是两两互质的。而在这道题中,mod的质因数分解后的各个p^a是互质的,所以mods中的各个元素是互质的的。因此,可以安全地使用中国剩余定理。 或者,在合并时,可以逐个处理: current_remainder =0 current_mod =1 for (p, a), rem in zip(primes, remainders): pa = p**a # 合并current_remainder mod current_mod 和 rem mod pa # 因为 current_mod和pa互质 # 使用扩展欧几里得算法 g, p1, p2 = extended_gcd(current_mod, pa) assert g ==1 new_mod = current_mod * pa # x = current_remainder + k * current_mod # 需要满足 x ≡ rem mod pa # k * current_mod(rem - current_remainder) mod pa k = ((rem - current_remainder) * p1) % pa new_remainder = (current_remainder + k * current_mod) % new_mod current_remainder = new_remainder current_mod = new_mod 这样,合并后的current_remainder就是结果。 现在,编写代码: 在Python中,需要注意以下几点: 1. 质因数分解的正确性。 2. 预处理数组时,当n是较大的(1e5)时,数组的初始化可能需要优化。 3. 处理多个质因数的中国剩余定理合并。 4. 当mod=1时,所有结果都是0? 但根据题目描述,mod的输入范围是1<=mod<=1e14,所以在代码中需要处理mod=1的情况。此时,任何数mod1都是0,所以所有查询的结果都是0。 综上,完整的代码可能如下: import sys from math import isqrt def input(): return sys.stdin.read() def factor(n): factors = {} while n %2 ==0: factors[2] = factors.get(2,0)+1 n =n//2 i=3 while i <= isqrt(n): while n%i ==0: factors[i] = factors.get(i,0)+1 n =n//i i +=2 if n>1: factors[n] =1 return factors def extended_gcd(a, b): if b ==0: return (a, 1, 0) else: g, x, y = extended_gcd(b, a %b) return (g, y, x - (a//b)*y) def main(): data = input().split() idx=0 Q = int(data[idx]) idx +=1 mod = int(data[idx]) idx +=1 queries = [] for _ in range(Q): n = int(data[idx]) r = int(data[idx+1]) queries.append( (n, r) ) idx +=2 if mod ==1: for _ in range(Q): print(0) return # 分解mod factors = factor(mod) primes = list(factors.items()) # 预处理每个质因数p的count_p和fact_p数组 max_n = max(n for n, r in queries) # 预处理每个质因数的count_p和fact_p for p, a in primes: pa = p**a # 预处理count_p数组 count_p = [0]*(max_n+1) for i in range(1, max_n+1): cnt =0 tmp =i while tmp %p ==0: cnt +=1 tmp //=p count_p[i] = count_p[i-1] + cnt # 预处理fact_p数组 fact_p = [1]*(max_n+1) for i in range(1, max_n+1): tmp =i while tmp %p ==0: tmp //=p fact_p[i] = (fact_p[i-1] * tmp) % pa # 保存到对应的结构中,比如字典,键是(p,a),值是(count_p, fact_p) # 这里因为每次循环处理一个质因数,可能需要存储这些数组,或者处理查询时动态计算? # 这里可以存储到列表中的每个质因数的元组中 # 所以,可以将primes列表的每个元素扩展为包含预处理数组的结构 # 修改primes列表的结构为 (p, a, count_p, fact_p) # 所以,在预处理时,将primes中的元素替换为四元组 # 但是,由于Python的元组不可变,所以可以创建一个新的列表 # 重新组织primes列表,每个元素包含 p, a, count_p, fact_p # 所以,在分解因子后,重新处理primes列表 processed_primes = [] for p, a in primes: pa = p**a # 预处理count_p和fact_p count_p = [0]*(max_n+1) for i in range(1, max_n+1): cnt =0 tmp =i while tmp %p ==0: cnt +=1 tmp //=p count_p[i] = count_p[i-1] + cnt fact_p = [1]*(max_n+1) for i in range(1, max_n+1): tmp =i while tmp %p ==0: tmp //=p fact_p[i] = (fact_p[i-1] * tmp) % pa processed_primes.append( (p, a, count_p, fact_p) ) # 处理每个查询 for n, r in queries: if r >n: print(0) continue crt_remainders = [] crt_mods = [] for p, a, count_p, fact_p in processed_primes: pa = p**a v_n = count_p[n] v_r = count_p[r] v = v_n -v_r if v >=a: rem =0 else: m_n = fact_p[n] m_r = fact_p[r] # 计算m_r的逆元 mod pa inv = pow(m_r, -1, pa) m = (m_n * inv) % pa # 计算p^v mod pa p_pow = pow(p, v, pa) m = (m * p_pow) % pa rem = m crt_remainders.append(rem) crt_mods.append(pa) # 合并所有同余方程 current_remainder =0 current_mod =1 for rem, m in zip(crt_remainders, crt_mods): # 解 x ≡ current_remainder mod current_mod # x ≡ rem mod m # 合并 g, x, y = extended_gcd(current_mod, m) assert g ==1, "Moduli are not coprime" # 新的数是 current_mod * m # 解方程: current_remainder + k*current_mod ≡ rem mod m # k ≡ (rem - current_remainder) * inv(current_mod, m) mod m k = ( (rem - current_remainder) % m ) * x % m new_remainder = current_remainder + k * current_mod new_mod = current_mod * m current_remainder = new_remainder % new_mod current_mod = new_mod print(current_remainder % mod) if __name__ == '__main__': main() 这应该就是完整的代码。需要注意的是,当mod=1时,所有结果都为0。此外,预处理count_p和fact_p数组时,需要预先知道最大的n,即max_n,这可以通过遍历所有查询中的n来获得。 在代码中,处理每个质因数时,预处理count_p和fact_p数组的长度是max_n+1,这可能会占用较多内存。例如,当max_n是1e5时,每个数组有1e5+1个元素。如果有多个质因数,这会占用较多的内存。但在Python中,这应该是可以处理的。 综上,这个方案应该能够正确处理所有情况,包括mod为任意数的情况,并且预处理和查询的时间复杂度都是可以接受的。</think>要解决这个问题,我们需要高效地计算组合数乘以阶乘的结果,并对给定的数取余。由于数可能非常大且不一定是质数,常规的组合数计算方法无法直接应用。以下是详细的解决方案: ### 方法思路 1. **问题分析**: - 给定函数 \( f(n, r) = C(n, r) \times (n - r)! \),可以简化为 \( n! / r! \)。 - 直接计算阶乘会导致数值溢出,因此需要运算。 - 当数不是质数时,无法直接使用逆元,需分解数为质因数的乘积,分别处理每个质因数的幂次。 2. **关键步骤**: - **质因数分解**: 将数分解为多个质因数的幂次乘积。 - **预处理**: - **阶乘中质因数的指数**: 计算每个数阶乘中每个质因数的个数。 - **除去质因数的阶乘**: 预处理每个数阶乘除去质因数后的结果。 - **中国剩余定理**: 合并各质因数幂次的结果,得到最终解。 3. **复杂度分析**: - 预处理阶乘数组的时间复杂度为 \( O(n \times k) \),其中 \( k \) 是质因数的个数。 - 每个查询的处理时间复杂度为 \( O(k) \),其中 \( k \) 是质因数的个数。 ### 解决代码 ```python import sys from math import isqrt def input_data(): return sys.stdin.read().split() def factor(n): factors = {} while n % 2 == 0: factors[2] = factors.get(2, 0) + 1 n = n // 2 i = 3 while i <= isqrt(n): while n % i == 0: factors[i] = factors.get(i, 0) + 1 n = n // i i += 2 if n > 1: factors[n] = 1 return factors def extended_gcd(a, b): if b == 0: return (a, 1, 0) else: g, x, y = extended_gcd(b, a % b) return (g, y, x - (a // b) * y) def main(): data = input_data() idx = 0 Q = int(data[idx]) idx += 1 mod = int(data[idx]) idx += 1 queries = [] max_n = 0 for _ in range(Q): n = int(data[idx]) r = int(data[idx+1]) queries.append((n, r)) if n > max_n: max_n = n idx += 2 if mod == 1: for _ in range(Q): print(0) return factors = factor(mod) primes = list(factors.items()) if not primes: primes = [(mod, 1)] processed_primes = [] for p, a in primes: pa = p ** a count_p = [0] * (max_n + 1) for i in range(1, max_n + 1): cnt = 0 tmp = i while tmp % p == 0: cnt += 1 tmp //= p count_p[i] = count_p[i - 1] + cnt fact_p = [1] * (max_n + 1) for i in range(1, max_n + 1): tmp = i while tmp % p == 0: tmp //= p fact_p[i] = (fact_p[i - 1] * tmp) % pa processed_primes.append((p, a, count_p, fact_p)) for n, r in queries: if r > n: print(0) continue remainders = [] mods = [] for p, a, count_p, fact_p in processed_primes: pa = p ** a v_n = count_p[n] v_r = count_p[r] v = v_n - v_r if v >= a: rem = 0 else: m_n = fact_p[n] m_r = fact_p[r] inv = pow(m_r, -1, pa) m = (m_n * inv) % pa p_pow = pow(p, v, pa) rem = (m * p_pow) % pa remainders.append(rem) mods.append(pa) current_remainder = 0 current_mod = 1 for rem, m in zip(remainders, mods): g, x, y = extended_gcd(current_mod, m) k = ((rem - current_remainder) % m) * x % m new_mod = current_mod * m current_remainder = (current_remainder + k * current_mod) % new_mod current_mod = new_mod print(current_remainder % mod) if __name__ == "__main__": main() ``` ### 代码解释 1. **输入处理**: 读取输入数据,提取查询和数。 2. **质因数分解**: 将数分解为质因数的幂次乘积。 3. **预处理**: - **count_p数组**: 存储每个数阶乘中质因数的个数。 - **fact_p数组**: 存储每个数阶乘除去质因数后的结果。 4. **查询处理**: - 对每个质因数计算余数,使用中国剩余定理合并结果。 5. **中国剩余定理**: 合并各质因数的结果,得到最终的数结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值