(a/b) mod m 的算法

(a/b) mod m 的算法
取模运算对加法、减法、乘法都封闭,所以我们很容易计算`(a+b)mod m`,`(a-b)mod m`,`(a*b)mod m`。但是,要计算`(a/b) mod m`就不是那么容易了。
下面分两种情况讨论(保证`a`是`b`的倍数)


1. `gcd(b,m) = 1`
此时可求`b`相对于`m`的逆元`b^(-1)`,即`b*(b^(-1)) = 1 (mod m)`
有`b*b^(-1) - km = 1`,其中k是一整数
用Extended Euclid算法可以求出`b^(-1)`
然后计算`a*b^(-1) mod m`,其值与`(a/b) mod m`相同


2. `gcd(b,m) /neq 1`
此时方程`b*b^(-1) - km = 1`无整数解,求逆元的方法失效了。
但是可以把问题转化成上面解决的问题。
思路:既然`gcd(b,m) /neq 1`,`a`又是`b`的倍数,那么`gcd(b,m)`一定是`a`和`b`的公约数。这提示我们把`a`和`b`约掉那些m的素因子之后问题就解决了。
令`a = a_0*t`, `b = b_0*t`,其中`t`的素因子集合包含于`m`的素因子集合,而`a`和`b`的素因子集合不能与`m`的素因子集合有交集。
这样有`(a/b) = ((a_0)/(b_0))`,并且`gcd(b_0, m) = 1`,就转化为可以用求逆元的方法解决的问题了。

### 实现模幂运算 模幂运算是指计算 \( r = a^p \mod m \),即在模 \( m \) 下求 \( a^p \) 的余数。这种运算通常通过 **快速幂算法** 来高效实现,其时间复杂度为 \( O(\log p) \)[^1]。 以下是基于 C++ 的模幂运算实现: ```cpp #include <iostream> using namespace std; // 快速幂函数 long long modularExponentiation(long long base, long long exponent, long long modulus) { long long result = 1; // 初始化结果 base %= modulus; // 将底数取模以减少数值范围 while (exponent > 0) { // 当指数大于零时循环 if (exponent % 2 == 1) { // 如果当前指数是奇数 result = (result * base) % modulus; } base = (base * base) % modulus; // 底数平方并取模 exponent /= 2; // 指数减半 } return result; } int main() { long long a, p, m; cout << "请输入底数a、指数p和模数m:" << endl; cin >> a >> p >> m; long long r = modularExponentiation(a, p, m); cout << "b^p mod k=" << a << "^" << p << " mod " << m << "=" << r << endl; return 0; } ``` 上述代码实现了模幂运算的核心逻辑,并按照指定格式输出结果[^2]。具体说明如下: - 函数 `modularExponentiation` 接收三个参数:\( a \), \( p \), 和 \( m \)- 使用二分法逐步降低指数大小,从而避免直接计算大数幂带来的性能问题。 - 输出遵循标准格式 \( b^p \mod k=s \)。 此外,在实际应用中,模幂运算常用于密码学领域中的加密解密过程,例如 RSA 算法中的核心操作就是利用模幂来完成数据的安全转换[^4]。 #### Miller-Rabin 素性测试与扩展欧几里得的应用 如果需要进一步拓展功能至素性检测或模逆元计算,则可以结合 Miller-Rabin 测试以及扩展欧几里得算法共同构建完整的工具集[^3]。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值