poj 1947 (树形DP)

poj 1947

题目:http://poj.org/problem?id=1947

题意:找到一棵节点数为P的子树,使切断的边最少。

思路:树形DP,状态转移方程为: d[ u ][ i ] = min(d[ u ][ i ]+1 , min( d[ v ][ j ]+d[ u ][ i-j ])) , j<i 。d[ u ][ i ]表示以u为根节点的节点数为 i 的所需切断的最少边数。先开始想成 d[ u ][ i ] = min(d[ u ][ i ]+1 , d[ v ][ j ]+d[ u ][ i-j ]) 了,后来一看,d[ u ][ i ] 一直在变,而这里的DP过程为是否切断 u 和 v 之间的边,错了,这里来回,搞脑子搞了很久!最后那里,先开始我也写成 ans = INF,然后一遍找最小值了,叫了一遍WA,然后,好吧,又是默然地看了别人的,应该是先令 ans = d[ root ][ p ] ,在一遍找 d[ i ][ p ] ,因为root不需要切断边,而其他点如果要成为ans,那么必须要切断它与它父亲的那条边。做题怎么总感觉差一点,差一点!

代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;


const int INF = 0x0fffffff ;


const int MAXN = 155 ;


vector <int> G[MAXN];


int n,m;


int vis[MAXN];


int d[MAXN][MAXN] ;


void dfs(int u)
{
    vis[u]=1;
    for(int i=0;i<=m;i++)
        d[u][i] = INF;
    d[u][1]=0;
    for(int i=0;i<G[u].size();i++)
    {
        int v = G[u][i];
        if(vis[v]) continue;
        dfs(v);
        //printf("u = %d,v = %d\n",u,v);
        for(int j = m;j>=1;j--)
        {
            int tmp = d[u][j]+1;
            for(int k = 1;k<j;k++)
            {
                tmp = min(d[v][k] +d[u][j-k],tmp);
            }
            d[u][j] = tmp;
            //printf("d[%d][%d] = %d\n",u,j,d[u][j]);
        }
    }
}


int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        for(int i=1;i<=n;i++)
            G[i].clear();
        int a,b;
        for(int i=1;i<n;i++)
        {
            scanf("%d%d",&a,&b);
            G[a].push_back(b);
            G[b].push_back(a);
        }
        memset(vis,0,sizeof(vis));
        dfs(1);
        int ans = d[1][m];
        for(int i=2;i<=n;i++)
            ans=min(ans,d[i][m]+1);
        printf("%d\n",ans);
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值