nyoj 102 次方求模 快速求幂

 
 
时间限制:1000 ms  |           内存限制:65535 KB
难度:3
描述

求a的b次方对c取余的摸

输入
第一行输入一个整数n表示测试数据的组数(n<100)
每组测试只有一行,其中有三个正整数a,b,c(1=<a,b,c<=1000000000)
输出
输出a的b次方对c取余之后的结果
样例输入
3
2 3 5
3 100 10
11 12345 12345
样例输出
3
1
10481
算法:快速求幂:
求a^b%c(RSA公钥的加密方法)
算法1:公式a*b%c=((a%c)*b)%c, 每一步都进行这种处理,这就解决了a^b可能太大存不下的问题,但这个算法的时间复杂度没有优势。
#include<iostream> using namespace std; long long f(long long a,long long b,long long c) { long long t,r; if(b==1) return a%c; t=f(a,b/2,c); r=(t*t)%c; if(b%2==1) r=(r*a)%c; return r; } int main() { int n,m; long long a,b,c; cin>>n; while(n--) { cin>>a>>b>>c; cout<<f(a,b,c)<<endl; } }
算法2:另一种利用了二分的思想,可以达到O(logn)。
可以把b按二进制展开为:b = p(n)*2^n + p(n-1)*2^(n-1) +…+ p(1)*2 + p(0)
其中p(i) (0<=i<=n)为 0 或 1.
这样 a^b = a^ (p(n)*2^n + p(n-1)*2^(n-1) +...+ p(1)*2 + p(0))
= a^(p(n)*2^n) * a^(p(n-1)*2^(n-1)) *...* a^(p(1)*2) * a^p(0)
对于p(i)=0的情况, a^(p(i) * 2^(i-1) ) = a^0 = 1,不用处理
我们要考虑的仅仅是p(i)=1的情况
化简:
a^(2^i) = a^(2^(i-1) * 2) = ( a^( p(i) * 2^(i-1) ) )^2(秦九昭算法)
利用这一点,我们可以递推地算出所有的a^(2^i)
当然由算法1的结论,我们加上取模运算: a^(2^i)%c = ( (a^(2^(i-1))%c) * a^(2^(i-1))) %c
于是再把所有满足p(i)=1的a^(2^i)%c按照算法1乘起来再%c就是结果, 即二进制扫描从最高位一直扫描到最低位
我们是把b进行二进制展开(就是转换为二进制)比如这个b就变成了1010110111111, 这样每次只需要求s1 mod c,s2mod c,... sn^(k-1) mod c,然后把对应位置上的二进制是1的项乘起来。在每次乘完以后求除c的余
#include <stdio.h> #include <stdlib.h> #include <string.h> long long a,b,c,m,temp,x; int main() { int t,i; scanf("%d",&t); while(t--) { scanf("%lld%lld%lld",&a,&b,&c); temp=a%c;m=1;x=1; while(b!=0)//用二分快速求幂的方法将复杂度 下降到log(2)c { if(b%2) {m=(temp*x)%c;x=m;} temp=(temp*temp)%c; b/=2; } printf("%lld\n",m); } return 0; }
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值