AI应用开发实战系列之一: 从零开始配置环境

AI应用开发实战 - 从零开始配置环境

与本篇配套的视频教程请访问:https://www.bilibili.com/video/av24421492/

零、前提条件

  • 一台能联网的电脑,使用win10 64位操作系统
  • 请确保鼠标、键盘、显示器都是好的

建议和反馈,请发送到 
https://github.com/Microsoft/vs-tools-for-ai/issues

联系我们 
OpenmindChina@microsoft.com

一、Windows下开发环境搭建

本教材主要参考了如下资源:

官方github教程:https://github.com/microsoft/vs-tools-for-ai

斗鱼tv教程:https://v.douyu.com/show/V6Aw87OBmXZvYGkg

本教程分为五步: 
- 安装VS:难度一星 
- 安装python:难度一星 
- 安装CUDA和cuDNN:这是本教程最繁琐的一步,这一步直接拉高本教程的平均难度。 
- 配置机器学习环境:这是本教程最简单的一步,为了方便用户配置环境,微软提供了一键安装工具!没错,一键安装工具!业界良心阿! 
- 安装VS Tools For AI插件:难度一星

note:本教程对各个软件需要使用的版本都做出了明确说明,请安装指定的版本

请放轻松,接下来的傻瓜教程不需要动脑子,你甚至可以打开手机边刷微博边配置环境

0.安装Git

访问 https://git-scm.com/download/win

选择64-bit Git for Windows Setup下载

双击.exe开始安装

选择好自己的安装路径,一路next,直到Adjusting your PATH environment

请选择Use Git from the Windows Command Prompt

这一步就已经将Git添加到环境变量中了,然后就可以直接在命令行里使用Git啦。

然后继续next,直到安装结束

1.安装VS

访问 https://www.visualstudio.com/zh-hans/products/ 
产品中点击Visual Studio 2017

选择Community版本下载

打开Visual Studio Installer进行如下的配置:

仅选择.NET桌面开发Python开发即可

仅选择.NET桌面开发Python开发即可

仅选择.NET桌面开发Python开发即可

note:请自行决定Visual Studio的安装路径

等待数分钟,时长视网络状况而定,这个时候你可以去泡一杯茶,或者听一首歌,如果你的网络不是很好,那你可以去看集美剧或者别的什么,等待安装结束。

note:坐 和 放宽

2.安装python

访问 https://www.python.org/downloads/

选择版本3.5.43.6.5 ,Windows x86-64 executable installer下载。 

打开安装包,在安装前,请选择Add Python 3.X to PATH,随后按照默认选项安装即可。

点选后,程序将自动将Python加入环境变量,这样避免在安装后手动配置环境变量。 

安装结束后,请进行如下操作验证python是否安装成功

1.同时按下 win 与 R,在弹出的输入框里输入cmd
2.在弹出的窗口中输入 python 
3.输入exit()退出
4.输入python -m pip install -U pip以更新pip到最新版本
  • 1
  • 2
  • 3
  • 4

note: pip是一个用来管理python包的工具

自此,你已经完成了python的安装,在朝着AI技术大牛的路上又前进了一步!

note:请伸出大拇指给自己一个赞?

3.安装CUDA与cuDNN

如果你的电脑装有Nvidia的显卡,请进行这一步配置,否则请跳过。

首先通过操作系统更新,升级显卡驱动到最新版。

3.1 安装CUDA

打开 https://developer.nvidia.com/cuda-toolkit-archive

选择CUDA 9.0 进行安装。

点击后,选择如下的配置:

note:请选择local版本下载,一旦失败还可以重新再来;如果使用network版本,一旦失败,需要重新下载1.4GB的安装包

打开安装包,进行安装,请自行配置CUDA的安装路径,并手动将CUDA库添加至PATH环境变量中。

note:在Windows中,CUDA的默认安装路径是:

“C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin”

3.2 安装cuDNN

note:打起精神!这是操作最复杂的一步!

访问 https://developer.nvidia.com/rdp/cudnn-archive 找到我们需要的cuDNN版本:

cuDNN v7.0.5 (Dec 5, 2017), for CUDA 9.0

cuDNN v7.0.5 Library for Windows 10

点击链接,等待着你的并不是文件下载,而是:

↑这就是本教程里最麻烦的一步:在下载cuDNN之前需要注册Nvidia会员并验证邮箱。不过还好可以微信登录,省掉一些步骤。

一番令人窒息的操作之后,我们终于得到了cuDNN,我们把文件解压,取出这个路径的cudnn64_7.dll,复制到CUDA的bin目录下即可。默认的地址是:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin

note:到这里,我们已经完成了本教程最复杂的一步了

4.安装机器学习的软件及依赖

这一步虽然是整个教程最简单的一步,甚至比把大象关进冰箱更简单。

你只需要:

win + R ,打开cmd,在命令行中输入:

cd c:\  //选择一个你喜欢的路径
md  AI  //在这里创建一个AI目录
cd AI   //打开这个目录
//克隆仓库到本地
git clone https://github.com/Microsoft/samples-for-ai.git
cd samples-for-ai //打开这个目录
cd installer //还有这个目录
python.exe install.py //开始安装
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

然后刷会微博,等待安装结束即可。

成功之后是这样的:

或者你觉得自己不怕麻烦,那么请访问:https://github.com/Microsoft/vs-tools-for-ai/blob/master/docs/zh-hans/docs/prepare-localmachine.md

根据教程按步安装,相信我,你会回来选择一键安装的。

note:就差一步啦!成功就在眼前!

5.安装tools for ai插件

打开Visual Studio,选择工具->扩展和更新->选择“联机”->搜索“AI” 
就像这样:

等待下载完成之后,关闭Visual Studio,没错,关闭Visual Studio,系统将自动安装AI插件。

安装完毕后再次打开Visual Studio,你将在界面上看到这样的内容:

那么恭喜你!安装成功!

note:千里之行始于足下,恭喜你成功地完成了环境的搭建,接下来就已经可以使用Visual Studio Tools For AI进行开发了?

二、离线模型的训练


6.14日更新 
GitHub上的samples-for-ai进行了一定的更新,目前MNIST文件夹下只有一个mnist.py文件,

下述步骤中,请使用最新的mnist.py文件


在进行完环境搭建后,我们马上就可以开始训练第一个模型了,我们选择tensorflow下的MNIST作为第一个例子。

MNIST的介绍请参考这个链接 https://www.tensorflow.org/versions/r1.1/get_started/mnist/beginners

首先我们打开这个路径:C:\AI\samples-for-ai\examples\tensorflow,如果你在别的目录下克隆了目录,那么请打开你对应的目录。然后双击TensorflowExamples.sln 
就像这样:

note:如果存在多个Python环境,你需要为Visual Studio的AI项目设置默认的Python环境。

例如,手动安装的Python 3.5与Visual Studio 2017 Python开发负载自动安装了64位的Python 3.6

如果要为Visual Studio设置全局的默认Python环境,请打开工具->Python -> Python环境。然后,选择自己需要的Python版本,点击将此作为新项目的默认环境

然后在解决方案资源管理器中,选择MNIST,单击右键,选择设为启动项目

然后选择MNIST中的mnist.py,单击右键,选择在不调试的情况下启动

然后程序就开始运行了,就像这样:

等待一段时间之后,模型就训练好了!这个时候打开MNIST所在的文件夹,MNIST下是否多了三个文件夹?分别是inputoutput还有export,这三个文件夹分别存储了训练模型的输入文件、训练时的检查点文件,还有最终导出的模型文件

检查点文件:

模型文件:

可能存在的问题

GPU ran out of memory

方法一: 
修改convolutional.py第45行或第47行的BATCH_SIZEEVAL_BATCH_SIZE为一个更小的数字。具体修改哪一个,需要视你在程序运行的哪个部分得到了ERROR决定。

方法二: 
不使用GPU训练,在项目MNIST上单击右键,选择属性(R)

修改环境变量为CUDA_VISIBLE_DEVICES=" "

每天前100人再送5门编程课! AI+5门300元课程+社群闭门分享会源码开源下载:https://github.com/DjangoPeng/keras-101/tree/master/code_samples 【为什么学AI】 归功于近年来大规模数据和硬件计算能力的大幅度提升,人工智能的概念近两年一直是市场追捧的对象。目前各大厂都争先恐后地布局AI,落地各类AI的的商业应用,也随之打响了一场激烈的人才争夺战。长远来看,越快将 AI 用于自己的工作就能越早体会到AI带来的收益。 【讲师介绍】 彭靖田 Google Developer Experts。 曾为 TensorFlow Top级 的贡献者,著书《深入理解TensorFlow》,是国内第一本深度剖析 Google AI 框架的畅销书。 曾从0到1深入参与了华为 2012 实验室深度学习平台和华为深度学习云服务的设计与研发工作。 【课程设计】 课程内容基于最新的Keras版本(你也可以使用 TensorFlow 2 的 tf.keras 模块),其有大量独家解读、案例,以及不少讲师一线实战多年的方法论和深度思考。同时,在层次划分上,难易兼顾,循序渐进。既有核心的基础知识,也有高级的进阶操作,尽量做到“老少皆宜”。 课程分为基础篇、入门篇和实战篇: 一、基础篇: 主要讲解人工智能发展史和深度学习脱颖而出的原由,以及神经网络的基础概念、理论实现、优化原理和计算方法。 二、入门篇: 主攻快速上手,通过7个小节让你从0到1实现环境搭建、模型优化,直接试水2个实战项目。同时,增强AI的理论学习,系统掌握机器学习3大分支、模型评估方法、数据预处理常用手段与过拟合问题的解决方案。 三、实战篇: 通过4个实战全面掌握深度学习理论与实现,涵盖目标检测、图像分类、可视化和可解释性学习、迁移学习、特征提取、数据增强等。带你综合运用前面所学的所有知识,逐渐熟练AI开发流程与技能。 课程包含思维导图上的所有内容(价值199元)前500名立减100元,仅99元买完就能学!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值