一. 定义:
1. 拓扑序:如果图中从v到w有一条有向路径,则v一定排在w之前。满足此条件的顶点序列成为一个拓扑序。
2. 获得一个拓扑序的过程就是拓扑排序。
二. 算法描述:
1. 通过遍历图,计算每个顶点的入度值。
2. 将图中每个入度值为0的顶点入队。
3. 判断队列是否为空,如果队列不为空,则出队赋值给v,输出顶点v,cnt计数值加1,并以此遍历v的所有邻接点,将其入度值减1,再判断其入度值是否为0,如果为0,
则将其入队,循环执行,如果队列为空,跳出循环。
4.判断cnt的值是否为图的顶点数,如果是返回成果,如果不是,说明图中有回路,返回不成功。
三. 代码实现:
/* 邻接表存储 - 拓扑排序算法 */
bool TopSort( LGraph Graph, Vertex TopOrder[] )
{ /* 对Graph进行拓扑排序, TopOrder[]顺序存储排序后的顶点下标 */
int Indegree[MaxVertexNum], cnt;
Vertex V;
PtrToAdjVNode W;
Queue Q = Cr