HashMap总结

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/u010820702/article/details/81606166

HashMap

         数组+链表实现 --> transient Entry<K,V>[] table,每个Entry有一个next指针

基本概念

         size,k-v的数量,map集合元素的个数

         initialCapacity,初始容量,默认值为16,是一个折中值,不是太小也不是太大

         capacity,容量,桶的数量=数组的长度

         loadFactor,装载因子=size/ capacity,用来衡量表满的程度,默认为0.75是一个经验值,不会太满,也不会太少

         threshold,扩容阀值,当表的size超过threshold时执行扩容操作= capacity * loadFactor

         capacity+ loadFactor共同确定了hash表扩容时机

JDK1.7

数据结构

         Entry<K,V>[] table +链表

  1. capacity始终是2的倍数,每次扩容为原来的两倍,是2的倍数和hash算法有关

int capacity = roundUpToPowerOf2(toSize);

  1. 阀值=容量*加载因子

threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);

  1. 允许key为NULL

  1. put操作先执行hash查找,在执行遍历查找,找到则更新,未找到执行添加操作,添加操作时检查阀值进行扩容,每次扩容两倍? 新加入的节点始终放在链表头next指向原来的链表头
  2. 扩容

创建一个新的数组           -->容量为原来的两倍

进行数据转移                  -->全量的重新hash

替换旧表                         -->替换数组,替换引用

更新扩容阀值

**扩容会导致局部的逆序,多线程并发可能出现死循环

  1. get

size=0,返回null

hash定位链表头节点

遍历查找链表节点

**对链表的遍历操作是不稳定的,可能会出现耗时较大的情况

  1. remove

类似于对单链表的操作,需要进行引用关系的移动

  1. 迭代操作

迭代开始时保存了对map修改的次数,迭代过程中如发现被修改抛出ConcurrentModificationException异常

JDK1.8

数据结构

         Node<K,V>[] table; 数组+链表+红黑树

         Node是Map.Entry的扩展

  1. capacity始终是2的倍数,每次扩容为原来的两倍,默认值16,最大1 << 30
  2. threshold=capacity* loadFactor(默认0.75)
  3. TREEIFY_THRESHOLD,将链表优化为树结构的阀值,默认为8,还有几个和红黑树优化相关的参数
  4. put操作

链表头节点为空,直接创建新节点

头节点key相同直接执行替换操作

头节点为TreeNode,转putTreeVal,执行红黑树的插入操作

遍历链表,找到则执行更新,找到链表尾端未找到则执行插入后检查是否需要优化链表

  1. 扩容

put操作触发扩容,桶长度小于MIN_TREEIFY_CAPACITY[默认64]时执行扩容

size大于阀值时执行扩容

创建新数组            -->扩容为原来容量2倍

进行数据转移         -->长度为1的链表直接转移,TreeNode进行拆分,链表进行拆分移位

扩容操作是安全的,不会出现死循环,相对的顺序不会被打乱

1.7-1.8的改进

 

数据结构改进

         使用TreeNode来优化链表的查找效率,使用链表+TreeNode的混合数据结构

hash函数改进

         return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);

         (n - 1) & hash

         #取模运算,也是capacity为2的倍数的根本原因

         a % b == (b-1) & a ,b2的指数时,等式成立。

扩容改进

         算法优化,避免并发扩容中的死循环

         1.7中的扩容算法会出现局部的逆序,并发扩容可能会出现死循环

         1.8保证顺序性,避免并发扩容出现死循环

关于红黑树[Red-Black Tree]

         红黑树,是一种特殊的二叉查找树.红黑树的每个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black).具有以下特性

  1. 每个节点或者是黑色,或者是红色
  2. 根节点是黑色
  3. 每个叶子节点是黑色,为空或者NIL的节点
  4. 如果一个节点是红色的则其子节点必须是黑色的
  5. 从一个节点到该节点的子孙节点的所有路径上包含相同的黑节点数

时间复杂度

         O(lgn), 通常用来存取有序数据,效率高

定理

         一棵含有n个节点的红黑树的高度至多为2log(n+1).

二叉树

平衡二叉树[AVL树]

         是基于二分法的策略提高数据的查找速度的二叉树的数据结构

         **

         查找效率较好,维持在O(logN)

         每个插入操作最多需要1次旋转, O(logN)左右

         删除操作代价稍大, O(2logN)

红黑树

         见红黑树,非严格平衡的

         **

         查找效率维持在O(logN)左右,最差情况性能差于AVL树

         插入节点需要执行旋转和变色操作,最多需要2次旋转, O(logN)左右

         删除代价小,删除一个节点最多需要3次旋转操作

 

考察点

  1. 扩容为什么是2的倍数?
  2. 1.7,1.8的实现比较
  3. hash函数的设计理念

附件

1.8put源码

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //检查是否需要初始化操作
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //检查是否桶为空[链表为空]
        if ((p = tab[i = (n - 1) & hash]) == null)
        	//直接创建一个新节点
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            //p是链表头节点,比较hash同时判断equals
	    //判断key是否相同,相同则标记e插入操作的表头节点
	    //hash
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
	    //链表头节点是树结构
            else if (p instanceof TreeNode)
	    	//对树结构进行插入操作
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
	    	//hash相同equals不同,执行普通的插入操作
		//这里的beancount为链表元素的个数
                for (int binCount = 0; ; ++binCount) {
		    //到达链表尾端
                    if ((e = p.next) == null) {
		    	//创建新节点
                        p.next = newNode(hash, key, value, null);
			//连表长度满足优化要求
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
		    //找到一个key相同的
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
		    //继续迭代
                    p = e;
                }
            }
	    //key存在,执行更新操作
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        //修改次数++
        ++modCount;
        //检查是否需要扩容
        if (++size > threshold)
            resize();
        //
        afterNodeInsertion(evict);
        return null;
    }

 

展开阅读全文

没有更多推荐了,返回首页