leetcode70假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

这篇博客介绍了一个C++实现的经典动态规划问题——爬楼梯。代码中定义了一个名为`climbStairs`的函数,它通过初始化数组并设置边界条件来计算达到第n级楼梯的不同方式数。状态转移方程f[i] = f[i-1] + f[i-2]用于从之前的状态推导当前状态。最终返回f[n-1]作为结果。
摘要由CSDN通过智能技术生成
class Solution {
public:
    int climbStairs(int n) {
        // 1 初始化数组
        std::vector<int> f(n);

        // 2 定义边界条件
        if (n == 1)
        {
            return 1;
        }
        if (n == 2)
        {
            return 2;
        }

        f[0] = 1;
        f[1] = 2;

        // 3 状态转移方程
        for (int i = 2; i < n; i++)
        {
            f[i] = f[i - 1] + f[i - 2];
        }

        // 4 找出结果
        return f[n-1];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

从一而终

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值