EAST文本检测详解(paper+code)

本文详细介绍了EAST文本检测模型的工作原理,包括基于分割的文本检测思路,使用U-net进行特征提取,以及如何生成score map、distance map和angle。文章还提及了在ResNet18基础上构建特征金字塔的方法,并提供了生成label和推理的代码链接。最后讨论了Locality-Aware NMS在处理大量框预测时的作用。
摘要由CSDN通过智能技术生成

 EAST: An Efficient and Accurate Scene Text Detector

作用:做文本检测,适用于旋转Box和四边形

归类:基于分割的文本检测,使用U-net做特征提取,预测score map和geometry map和angle

1.Backbone:

上图黄色代表特征提取网络,可以是VGG,ResNet,PVANET(作者提到的一个模型),特征提取模型的视野域会影响最终的结果,

根据不同的任务可以调整视野域,来检测不同长度的文本

上图绿色的部分就是个很经典的特征金字塔结构

这个地方实现也很简单,以ResNet18为例,在做forward的时候,将当前层的feature保存在一个list里面(上图的f)ÿ

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值