爬楼梯算法问题分析(不止三步)

算法分析:

  1. 阶梯数为1,爬楼梯方法就一种,为1,f(1)=1;
  2. 阶梯数大于1的时候,递归求解:阶梯数为2的时候,最多两种方式上楼:1 ,1;2  =>  f(2)=2;
  3. 爬三层楼梯的时候,爬1层,再爬两层,则是爬三层楼梯由爬一层楼梯和爬两层楼梯的情况的结合:f(3)=f(2)+f(1);
  4. 以此类推:f(n) = f(n-1)+f(n-2)+...+f(n-n+1)   =>   f(n)=f(n-1)+f(n-2)+...+f(1);此种情况,设置的最大爬阶梯数为n-1;
  5. 当限定最大爬阶梯数量为m时候(0 ≤ m ≤ n-1) 那么,f(n)=f(n-1)+f(n-2)+...+f(n-m)。

 /**
  * 
  */
package com.cn.count;


import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.util.Scanner;


import j
  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
为什么人人都要学算法? 程序员对算法通常怀有复杂情感,算法很重要是共识,但是否每个程序员都必须学算法是主要的分歧点。很多人觉得像人工智能、数据搜索与挖掘这样高薪的工作才用得上算法,觉得算法深不可测。但是这些其实都不是具体的算法,而是一系列算法的集合。 所以说,好的代码从来离不开优秀的算法算法不学不可! 本门课程为系列课程第一课,挑选出非常实用、高效、高频的算法:动态规划! 动态规划(Dynamic programming,简称DP)很多人都觉得是比较难以理解和掌握的一种算法,为了应付面试更多的时候程序员会选择直接死记硬背斐波那楔数列或者背包问题的源码,其实只要认真学习、彻底理解,动态规划并没有那么难。 学完即可掌握面试中90% 以上会问到的算法问题 ,实用性99.9999%! 这门课程,授课老师很厉害! 王硕-资深软件工程师,从事计算机相关课程教学多年,擅长Java、Python、数据结构和算法等课程,有丰富的计算机课程的教学经验。致力于企业级软件开发和计算机教育工作,具有索尼中国研究院和四大国有银行软件开发中心的工作经历。 著有编程畅销书《你也能看得懂的Python算法书》。 本课程实用性极强,边学边练!零基础也能轻松入门~ 在这门课中,我们保证你能收获到这些 1)透彻理解:到底什么是动态规划 2)细致讲解:挖矿工问题 3)细致讲解:爬台阶问题 4)细致讲解:背包问题 【注意】 1)现在购买至少享受40元优惠;2)课程教辅材料自助下载; ---------------------------------------------------------------

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值