本博客记录观看品牌展示广告部分的一些笔记, 绝大多数为原slide内容,只做简单的整理。
1. 基本概念
展示广告分类
按广告作用分类:品牌广告(Brand Display); 直效广告(Direct Response)
按创意形式分类:图片,图文,富媒体,视频,Email
广告和营销场景
影响品牌展示广告的主要因素
1. 人; 2. 品牌自身; 3. 媒体(覆盖率/质量,知名度); 4. 创意形式(消息)
2. 售卖
品牌展示广告售卖的参与者
1. 消费者/在线用户; 2. 广告主; 3. 广告代理商; 4. 媒体; 5. 售卖平台
品牌展示广告售卖的方式
1. 包段
某组广告位一段时间内由一个广告主独占或几个广告主轮播
计价方式: CPD
特点:1.简单,易组织; 2. 广告主承担流量变化风险; 3. 无法区分同一位置不同时间不同用户的价值(无法最大化广告主和媒体双方的价值)
2. GD合同制
以一定CPM预约符合定向规则,时间规则和其他规则的一定数量的广告展现
定向规则: 1. 人群定向; 2. 媒体位置定向
其他规则: 1. Frequency Capping; 2. 投放均匀度
广告主需要支付相应的费用, CPM*实际广告展现
当实际广告展现无法达到约定时, 售卖方对广告主进行补偿
3. NGD拍卖式售卖
剩余流量:现有包段或GD合同之外的流量
媒体售卖率: SellThroughRate = SoldImpressions / Capacity
通常选择是将剩余流量交给网络联盟或者Ad Exchange进行基于拍卖的售卖
3. 精准投放技术
营销目标:正确的时间,正确的场合,最正确的人说适合的内容
精准投放(Targeting): 在上述因素中,根据广告内容进行精确匹配做到正确
媒体定向(Media Focused Targeting)
Offline投放形式:1. 户外; 2. 报纸杂志; 3. 电视; 4. 广播
Online投放形式:1. 定位到站点; 2. 定位到页面关键词
特点:1. 时间性; 2. 粒度;3.真正想定位什么?
受众定向(Audience Focused Targeting)
Demographic(性别,年龄,职业,收入等)
数据收集,数据整合, 属性预测与机器学习技术
Geographic (家庭地点,工作地点,常见地点,实时地点; 地点周边信息,如商业配套等)
数据收集,数据整合,商业场景
Lifestyle/Psychographic (生活习性,偏好,兴趣爱好等等)
数据采集,品牌市场细分与洞察,用户行为分类技术
Re-targeting/Re-messaging (用户与商家说产生的历史互动)
线上线下数据的贯通,线上用户行为记录
Behavioral (用户的在线行为,包括搜索和网页浏览等)
用户行为与商品关联理解与洞察,用户行为基础分类技术,特征提取和机器学习技术
智能创意
4. 品牌展示广告的基本问题
订单接受控制(Admission Control)
系统应该接受还是拒绝订单:雅诗兰黛,下周7天,定向25-35岁女性,投放新浪女性等20个站点,CPM12元,目标5千万展现
库存分配
根据目前已确认的所有订单,应该如何分配广告展现机会到每一个订单
库存分配扩展问题
考虑:广告主希望在订单时期内均匀输出广告展现
考虑:当同时向GD和NGD进行售卖时,优化总体总收益
Reference:Bidding for Representative Allocations for Display Advertising. (WINE 2009. Arpita Ghosh etc)
价格体系
价格是基于销售和谈判的。但对于这个谈判,有没有一个价值指引?
5. 效果评测
品牌广告问卷调查
对符合测试组和对比组的用户/cookie进行均匀采样
互动指数(Engagement Index)
量化用户与品牌间的各种互动E_i, 得到最终的互动指数 EngagementIndex = sigma(W_i *E_i)
从广告影响方式的角度
Reach; Frequency/频次; Dwelling-time/Brand Exposure; 媒体综合质量; 创意互动程度