AITBOOK

计算广告,数据挖掘,机器学习
私信 关注
AITBOOK
码龄10年

广告算法工程师,写些互联网广告的那些事儿

  • 445,503
    被访问量
  • 100
    原创文章
  • 12,690
    作者排名
  • 431
    粉丝数量
  • 于 2011-07-03 加入CSDN
获得成就
  • 获得130次点赞
  • 内容获得41次评论
  • 获得310次收藏
荣誉勋章
兴趣领域
  • #算法
    #caffe#迁移学习#推荐算法#scikit-learn#分类#排序算法#TensorFlow#回归#聚类
TA的专栏
  • oCPC实践录
    26篇
  • 强化学习笔记
    24篇
  • 计算广告专栏
    6篇
  • 广告算法工程师入门
    40篇
  • 漫谈机器学习
    4篇
  • 人工智能那些人那些事儿
  • 计算广告 产品
    8篇
  • 计算广告 触发
    1篇
  • 计算广告 模型
    9篇
  • 计算广告 企业实践
    11篇
  • 计算广告 机制
    10篇
  • 计算广告 资讯
    6篇
  • 计算广告 运营
    5篇
  • 算法工程师笔试面试
    3篇
  • 机器学习理论
    6篇
  • 职业规划
    8篇
  • 计算机基础
    22篇
  • 计算广告 设计
    1篇
  • 计算广告 架构
    5篇
  • 软件测试
    3篇
  • 强化学习
    23篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

oCPC实践录 | 和广告主读者交流记录

链接阅读oCPC实践录 | 产品冷启动问题
原创
550阅读
0评论
0点赞
发布博客于 9 月前

oCPC实践录 | 转化率模型与校准(2)

链接阅读oCPC实践录 | 转化率模型与校准(2)往期内容:oCPC实践录 | 转化率模型与校准(1)oCPC实践录 | 最好最快的方法就是抄oCPC实践录 | 随你千变万化,oCPC PID控制(3)oCPC实践录 | 随你千变万化,oCPC PID控制(2)oCPC实践录 | 随你千变万化,oCPC PID控制(1)oCPC实践录 | 简单有效,oCPC逆系统控制oCPC实...
原创
556阅读
0评论
0点赞
发布博客于 10 月前

oCPC实践录 | 转化率模型与校准(1)

oCPC实践录 | 转化率模型与校准(1)
原创
782阅读
0评论
0点赞
发布博客于 10 月前

oCPC实践录 | 最好最快的方法就是抄

这是AITBOOK的第33篇原创文章又让各位读者久等了,最近一直在忙着查各种问题。有些是为了解决广告主问题,有些是填补产品和策略设计的坑。让我感触很深的是大老板亲自排查定位问题,做事麻利高效,学到很多。一个人不是随随便便就能成功。“极度渴望成功,愿付非凡代价”,也是从他这里听说的,现在也看到他在实践。讨论时提到百度凤巢从产品主导转变到技术主导的原因,其中一个观点我十分赞同:产品很关键,不能只谈...
原创
743阅读
1评论
0点赞
发布博客于 1 年前

oCPC实践录 | 随你千变万化,oCPC PID控制(3)

这是AITBOOK的第32篇原创文章距离上篇文章已经过了两个月,让各位读者久等了。过了年,变得懒惰起来。工作也早早开始了,并且越来越忙,现在oCPC工作是攻坚克难部分了,在提高成本控制时效性和稳定上做了大量的工作。从过年开始一直在准备oCPC分享的内容,把之前做过的事情梳理了一下,后续考虑开个直播分享给各位!言归正传,我们回到PID控制上来,在上篇文章oCPC实践录 | 随你千变万化,oCPC...
原创
684阅读
0评论
0点赞
发布博客于 1 年前

oCPC实践录 | 广告算法工程师的自我修养

​这是AITBOOK的第31篇原创文章2019年即将过去,2020年马上到来,在这个时候做一下总结,发一下展望是最合适不过的。2019年互联网广告的发展已有人总结为令人失望,2020年估计也好不到哪去。小米创始人雷军有句话"站在风口上,猪都会飞,长出一个小翅膀,就能飞得更高",这句话用在算法工程师身上也很适用,前几年移动互联网发展迅速,大量互联网公司依靠广告变现,广告算法工程师供不应求,薪酬待...
原创
808阅读
2评论
0点赞
发布博客于 2 年前

oCPC实践录 | 随你千变万化,oCPC PID控制(2)

在oCPC实践录 | 随你千变万化,oCPC PID控制(1)中我们分析了比例控制将实时误差考虑进来,具有最快的响应速度,但只有比例控制作用时,real_cpa会偏离given_cpa,产生余差,消除余差的办法就是将历史累积误差引入控制作用。PID控制之比例积分控制(PI)比例积分控制作用的公式为:k = kp * e + ki * sum(e) + k0式中k0可以理解为初始平衡...
原创
978阅读
2评论
0点赞
发布博客于 2 年前

oCPC实践录 | 随你千变万化,oCPC PID控制(1)

好久没有更新了,今天写点吧,主要是事情有点太多,整不过来了。今天和万总讨论策略的事情,让我有所感悟。之前我遇到一个问题,立马就去想解决方案,对于一个很简单的问题,可能很快就能想到好的解决方案,快速实现。但现在遇到的一些问题已经不是一下子就可以得到完美解决方案,这个时候如果还是一股脑的立马就想解决方案,很可能会走弯路,浪费大量的时间做尝试,效率低下。之前常说的『小步快跑,快速迭代』的方式,是有前提...
原创
1324阅读
1评论
0点赞
发布博客于 2 年前

oCPC实践录 | 简单有效,oCPC逆系统控制

​在)oCPC实践录 | 好难理解的oCPC成本控制算法(1中分析了控制策略直接设计为k=cpa_ratio是错误的。其中提到一句,是有一个k值是正确的,使得cpa_ratio=1,但这个k怎么计算呢?做惯模型的人可能会有一个想法,既然假设系统是线性,那么是不是可以构建模型cpa_ratio = alpha * k + beta, 通过采样获得样本计算获得alpha和beta, 然后当新cpa...
原创
1422阅读
0评论
0点赞
发布博客于 2 年前

oCPC实践录 | 好难理解的oCPC成本控制算法(1)

​这是AITBOOK的第26篇原创文章媒体方选择按照点击计费的oCPC产品,而不是按照转化计费的CPA产品,为广告主优化成本,享受收入稳定性和系统便利性的同时,就要承担成本控制的任务,如果成本控制不住,为了维持客户,可能还需要向广告主赔付超出成本的部分。因此oCPC成本控制是一个很重要的事情。之前很多工作可能与控制无关,现在终于遇到控制问题,对于一个学控制科学与技术的程序员来说,有种莫名的亲切...
原创
1090阅读
0评论
0点赞
发布博客于 2 年前

oCPC实践录 | 摸石头过河,oCPC先跑起来再说

oCPC才开始的实践基本上是摸着石头过河,不断测试实验。不过也可以参考已有的oCPC产品设计,oCPC首要需要解决的是转化目标和转化数据。在解决转化数据之前,可以先看一下申探社:深入互联网广告中的出价模式(上)— 基础出价模式这篇文章,熟悉一下基本的出价原理。其中"四点三率"把广告出价模式统一起来,"四点"是竞价点、计费点、出价点,考核点。CPM广告的竞价点计费点出价点都是一致的;CPC广告的计...
原创
767阅读
0评论
0点赞
发布博客于 2 年前

oCPC实践录 | 谁会阻止你做oCPC?

今天本来很累的,不想写文章,但是不吐不快,十分感谢我的335名读者可以听我扯这些没用的。前面一系列文章都在说oCPC的优势,正是因为这些优势的存在,会触动一些人的利益,他们会极力阻止oCPC产品及其升级。所以在写oCPC具体实践之前,还是看看谁会阻止你做oCPC吧,以备后患。oCPC的本质是量化流量价值,实现最精细化的广告投放,所以无论公司内部还是外部都有一些人会阻止你或者不使用oCPC,这里仅...
原创
765阅读
0评论
0点赞
发布博客于 2 年前

oCPC实践录 | oCPC产品设计与出价原理(2)

在上篇文章oCPC实践录 | oCPC产品设计与出价原理(1)中已经提到了oCPC产品设计的前两个关键点(1)转化目标和给定成本(2)模型,这些都是oCPC产品做好的必要条件,本篇讨论(3)怎么出价保成本(4)oCPC的深层意义。关于转化目标和给定成本问题,再补充一点,很多人认为转化越靠前,对媒体方越有利,对广告主越不利,比如说在媒体方看来,计费方式的优先排序是CPM > CPC >...
原创
1186阅读
0评论
0点赞
发布博客于 2 年前

oCPC实践录 | oCPC产品设计与出价原理(1)

文章这周都没有更新了,工作有点忙。终于写到正题了,写oCPC产品设计我是十分恐慌,自己并非PM,可能表述没有章法,但是希望能够把道理讲清楚。在前面的文章中,我们已经反复介绍过多次,互联网广告的本质是流量买卖,oCPC的本质是 流量价值通过转化率进行量化,实现最精细化的广告投放。 如果能够理解这一点,oCPC产品设计及其升级方向基本上就没问题了,剩下的就是具体实现了。我最近也关注了一些SEM和写...
原创
2102阅读
0评论
0点赞
发布博客于 2 年前

oCPC实践录 | 成本优化策略之eCPC(3)

接着oCPC实践录 | 成本优化策略之eCPC(2)中的推论(2)推导eCPC的出价公式。先纠正下前文中推论(2)的表述,正确的表述为:如果要符合保转化成本的准则,只要保证媒体调整出价得到的回报投入比(ROI)不低于之前广告主回报投入比(ROI)即可。接下来的推导为淘宝展示广告oCPC出价策略,我这里将其定义为eCPC出价策略,该策略是基于推论(2)进行推导的。可参看解读文章淘宝展示广告中的OC...
原创
1048阅读
1评论
0点赞
发布博客于 2 年前

oCPC实践录 | 成本优化策略之eCPC(2)

在oCPC实践录 | 成本优化策略之eCPC(1)中引出两种根据转化率进行调价的方式。无论哪种方式,媒体方帮广告主出价都需要一个准则:保证广告主的转化成本。因为oCPC需要广告按照媒体方定义的转化目标给定转化成本,直接该成本引入出价就行,通过调整出价使得广告主真实的转化成本逼近广告主给定的转化成本即可(后续文章会介绍出价方法)。但是eCPC不需要广告主表达成本,媒体方缺乏对广告主转化成本的数据,...
原创
1008阅读
0评论
1点赞
发布博客于 2 年前

oCPC实践录 | 成本优化策略之eCPC(1)

我又被CVR门槛坑了!最近有同学问我在忙啥?我一直在忙着打破前面文章oCPC实践录 | 成本优化策略之CVR门槛(2)说的"CVR门槛"死局问题。在那里已经提到了,使用CVR门槛产品,广告主可以获取高转化流量,进而优化转化成本,但随着产品覆盖面逐步变大,广告主和媒体方会陷入"死局",而破局之法就是高转化流量出高价,低转化流量出低价。因为现在公司转化率模型的泛化能力和实时性均比较差,缺乏用户一段...
原创
1449阅读
0评论
0点赞
发布博客于 2 年前

oCPC实践录 | 成本优化策略之CVR门槛(2)

在上篇文章oCPC实践录 | 成本优化策略之CVR门槛(1)中,设计CVR门槛由广告主控制的成本优化产品,通过这个产品,广告主可以根据自己的实际需求,调整CVR门槛,获取自己想要的那部分流量,媒体方仅仅需要设置一个最高门槛和预估转化率就行,十分简单有效。但随着产品覆盖用户越来越多,消费越来越大,会使得广告主和媒体方陷入成本优化的死局。不得不发出这样的疑问,CVR门槛由媒体方控制,不向广告主披露是...
原创
760阅读
0评论
0点赞
发布博客于 2 年前

oCPC实践录 | 成本优化策略之CVR门槛(1)

北京秋天的周末,刚下过一场小雨,外面凉飕飕的。我宅在家里,吃着脆甜的冬枣,剥着三红柚子,正想着要不要写一下文章。突然电话响起,老板打电话过来说运营要测试一下广告的落地页,需要下调CVR门槛。原本以为就是配置一下参数就可以了,但想起昨天测试的数据,让我犹豫了,这个测试是否会带来什么影响的,仔细一想极有可能导致广告收入在悄无声息中下跌。经过一番讨论之后,确定了初步的测试方案,然后决定写《成本优化策...
原创
908阅读
0评论
1点赞
发布博客于 2 年前

oCPC实践录 | 糟糕,广告主成本超了!

在 oCPC实践录 | 没有oCPC怎么做成本优化?中分析了在没有oCPC的情况下,广告主怎么做成本优化。对于媒体方来说,因为拥有用户和广告主的数据,有更多的方法来帮助广告主做成本优化。我们把关注目光回退到 oCPC实践录 | 我还是做oCPC吧!,这个时候Q公司大部分广告主还没有开通oCPC,部分广告主转化成本居高不下,甚至需要实时关注效果,调整价格等,优化转化成本的期望强烈。那媒体方有哪些操...
原创
1066阅读
0评论
2点赞
发布博客于 2 年前

oCPC实践录 | 没有oCPC怎么做成本优化?

过了十一,文章更新的速度有点慢了,主要是工作有点忙,现在的oCPC处于攻坚克难的关键时刻,这边oCPC产品设计和功能实现上一点也不比竞争对手差,只不过转化率模型效果可提升的空间很大,与竞对的差距不小。重新回顾一下,oCPC通过预估转化率量化流量价值,实现广告的最精细化投放。oCPC产品向转化率预估模型的预测结果至少提出三点苛刻的要求:(1)序关系要对,高转化流量预估值要高,低转化流量预估值要低,...
原创
1405阅读
0评论
1点赞
发布博客于 2 年前

oCPC实践录 | 重新理解oCPC-出价方式(2)

在oCPC实践录 | 重新理解oCPC-出价方式(1)中提到媒体方通过使用广告主回传的转化转化,构建转化率预估模型,在线预估每个流量对每个广告的转化率,根据转化率进行出价,承担起原本应该承担的流量价值评估和出价的责任。媒体怎么预估转化率呢?模型的问题在这里不重点介绍,简要说明一下,与预估点击率基本一样,都需要考虑广告,用户,媒体三方面的因素,给出一个预测值。广告方面可能会加入广告的标题内容样式,...
原创
1476阅读
1评论
0点赞
发布博客于 2 年前

oCPC实践录 | 重新理解oCPC之出价方式(1)

最近我把文章发在一些几个媒体上,争取引一些流量过来。测试来测试去,还是CSDN的效果好点,并且发现其中一篇文章oCPC实践录 | 我还是做oCPC吧!的阅读量比其他文章的阅读量高多了,我仔细分析了一下主要原因是"做oCPC"这个关键词在百度搜索上比较常见,并且我的文章可以排到第三位。其他文章的标题过于生僻就没有流量了。看来只有亲自做一些"采购"流量的事情,才知道广告主是多么不容易。最近有两个读者...
原创
2318阅读
1评论
0点赞
发布博客于 2 年前

oCPC实践录 | 重新理解oCPC之量化流量价值

周末的时候把文章在知乎专栏也同步了一下,希望能够增加自己的粉丝量,尽可能接触到更多的流量。虽然不用花钱去购买这些流量,但也要付出时间和精力来维护,心里还是会核算一下成本的。同样的,广告主投放互联网广告,无论采用哪种计费方式,核算成本是很重要的内容。广告主对投放效果要求的日趋严格,驱动着广告算法技术的不断升级。在计算广告专栏中提到互联网广告的本质是流量买卖,在这场买卖中,媒体方,广告主,用户各有...
原创
1442阅读
0评论
0点赞
发布博客于 2 年前

oCPC实践录 | 我还是做oCPC吧!

去年12月底,我离开B公司来到Q公司,这是我第一次跳槽,当时有几个公司给了offer,主要纠结点是要不要继续做机制工作。在B公司已经做了大半年搜索广告的oCPC了,主要是开发线上代码和线下的数据流等工作,与产品、运营、销售几乎没有接触。在与同事的讨论中,让我逐步了解到oCPC的本质是量化流量价值,实现最精细化的广告投放。在后来的选择中,我越来越意识到还是先做自己擅长的事情比较好,想凭借对oCPC的...
原创
1613阅读
0评论
0点赞
发布博客于 2 年前

计算广告 | 互联网广告的售卖方式(3)

在计算广告 | 互联网广告的售卖方式(2)提到,互联网广告中的流量买卖逐步演变为拍卖的形式,流量拍卖成为满足双方利益的交易形式。既然提到利益,还是需要先分析一下在互联网广告投放过程中,媒体、广告主、用户的三方利益是什么?媒体方的利益是在不伤害用户体验的情况下,通过投放广告获得收入,最好能够最准确刻画流量的价值,将该流量分配给最能够产生价值并为自己赚取最大收入的广告主手中,实现最完美的匹配;追求长...
原创
282阅读
0评论
0点赞
发布博客于 2 年前

计算广告 | 互联网广告的售卖方式(2)

在计算广告 | 互联网广告的售卖方式(1)中提到定向广告是流量精细化售卖的重要起点,与传统广告有了本质的不同。无论是媒体方,还是广告主在广告的交易过程中,均发生一些变化。对于媒体方而言,需要解决流量的划分、分配、定价的问题。互联网广告发展的初期,流量的划分往往通过时段、地域、人群性别、年龄、兴趣等定向标签完成划分,前期的广告因为需要保量,防止广告主精选流量,所以划分不是精细。流量分配需要根据广告...
原创
238阅读
0评论
0点赞
发布博客于 2 年前

oCPC实践录 | 开篇语

在计算广告 | 互联网广告的售卖方式(1)中提到,我一直在做互联网广告的一个产品oCPC。在和团队的不断沟通交流中,对于oCPC产品不断有新的认知,学到了很多知识。在现公司的现有状况下,能够把oCPC做起来是出乎意料的,特别是从零起步就更难上加难。oCPC产品不同于其他商业产品,它几乎将用户、广告主、销售、运营、模型、策略等紧密的联系起来,能够反映整个商业团队的整体水平。在整个过程中,有很多有价值...
原创
1309阅读
0评论
0点赞
发布博客于 2 年前

计算广告 | 互联网广告的售卖方式(1)

从18年6月份至今,我大部分的工作是在做一个产品oCPC(optimized CPC),之前一直认为oCPC就是一个帮广告主出价的简单工具,可做的东西不多,但后来的学习和实践,在与广告主的各种博弈过程中,改变了我之前的想法。特别是当看到oCPC产品从消费为零做到覆盖整体收入的一半时,我对互联网广告的流量价值和售卖方法有更清楚的认识。在上篇文章中计算广告 | 互联网广告的商业模式(2)介绍到,互联...
原创
605阅读
0评论
0点赞
发布博客于 2 年前

计算广告 | 互联网广告的商业模式(2)

上次发了计算广告 | 互联网广告的商业模式(1)后,看到有同学留言问"什么时候出干货?"。说实在的,现在写的才是真正的干货,对于这部分很熟悉的同学可以再看看并耐心等待。互联网公司的广告系统是十分复杂的商业系统,支撑着公司的主要收入,如果不把其中赚钱的原理介绍清楚,直接堆技术点,是没有意义的。一方面互联网广告业务变化很快,技术点可能很快过时,而且会发现即使系统错误百出,策略设计不甚合理,广告系统这...
原创
360阅读
0评论
0点赞
发布博客于 2 年前

计算广告 | 互联网广告的商业模式(1)

从事互联网广告相关工作已经三年多,一直在关注和学习广告圈的人和事。可能是因为典型摩羯座的原因,对于很多事情都想刨根问底,特别是对于互联网广告的商业模式,总想研究透彻。每当圈外人问我是做什么工作的时候,我就很难解释,简单说是做广告的话,听者脑海中可能立马浮现起电视剧中做广告设计的画面:西装革履,拿着笔,抱着广告方案,站在屏幕前给一群人讲着别具一格的创意,畅想着广告带来的完美效果。可惜我不是广告设计...
原创
424阅读
0评论
0点赞
发布博客于 2 年前

计算广告 | 做几件让自己满意的事情

上周出差在飞机上翻开了几本杂志,出于职业的敏感,专门看看其中的广告。有一个营销广告很有意思,上面写着『专业营销培训,一天课程,上午理论,下午实战演练,30万』,内心感叹这个真是厉害了。转而一想,我前年申请公众号的时候,有个公众号被百度以1亿的价格收购了,也不觉着这个有多贵了。公众号的创建者凭借几篇自创的营销理论文章,一跃成为百度的副总裁,享尽荣光,可短短两年不到,就离职百度,不知道有什么产出(百度...
原创
242阅读
0评论
0点赞
发布博客于 2 年前

23种设计模式全解析

转载来自:https://www.cnblogs.com/geek6/p/3951677.html23种设计模式全解析一、设计模式的分类总体来说设计模式分为三大类:创建型模式,共五种:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。结构型模式,共七种:适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。行为型模式,共十一种:策略模式、模板方法模式、观察...
转载
216阅读
0评论
0点赞
发布博客于 3 年前

【强化学习笔记】9.1 基于确定性策略搜索的强化学习方法

前文介绍的策略梯度方法和TRPO方法是随机策略的方法,所谓随机策略就是在确定性策略的基础上添加上随机项。当然强化学习也可以直接使用确定性策略。确定性策略就是对于相同的策略,每种状态对应唯一确定的输出,这样需要采样的数据少,算法的效率高,但是确定性策略缺乏探索和改善的能力,因此基于确定性策略搜索的强化学习方法(DPG)往往采用异策略实现,即行动策略和评估策略不是同一个策略,如行动策略采用随机策略,以...
原创
1339阅读
0评论
0点赞
发布博客于 3 年前

【强化学习笔记】8.1 基于置信域策略优化的强化学习方法

在【强化学习笔记】7.1 基于策略梯度的强化学习方法中介绍的策略梯度方法存在步长选取的难题,Abbeel提出基于置信域策略优化的强化学习方法(TRPO),正面解决步长问题。首先需要确定什么是合适的步长,最基本的想法,合适的步长是当策略更新后,回报函数的值不能变差。 公式的推导还是请看原版书的作者博客吧!自己也没有看懂!。。。 强化学习进阶 第七讲 TRPO参考书籍:深入浅出强化学习原理...
原创
1249阅读
0评论
0点赞
发布博客于 3 年前

【强化学习笔记】7.1 基于策略梯度的强化学习方法

之前学习的强化学习方法是值函数的方法,目标是求取最优策略(是状态空间到动作空间的一个映射),而之前的方法主要是针对有限动作空间的情况,对于连续动作空间,需要考虑使用策略梯度的强化学习方法。策略梯度方法是指将策略参数化πθ(s)πθ(s)\pi _{\theta}(s),表示连续空间的策略,通过优化参数θθ\theta使得累积回报E[∑Ht=0R(st)|πθ]E[∑t=0HR(st)|πθ]E...
原创
1585阅读
1评论
0点赞
发布博客于 3 年前

强化学习实验环境 I (MuJoCo, OpenAI Gym, rllab, DeepMind Lab, TORCS, PySC2)

转载:http://blog.csdn.net/jinzhuojun/article/details/77144590和其它的机器学习方向一样,强化学习(Reinforcement Learning)也有一些经典的实验场景,像Mountain-Car,Cart-Pole等。话说很久以前,因为没有统一的开发测试平台,大家都会自己实现,有用C/C++的,有用Python,还有用Matlab的。所以...
转载
2542阅读
0评论
1点赞
发布博客于 3 年前

【强化学习笔记】6.6 基于值函数逼近的强化学习方法-TD Q-learning非线性逼近softmax代码实现

基于值函数逼近的强化学习方法-TD Q-learning非线性逼近原理见【强化学习笔记】6.1 基于值函数逼近的强化学习方法针对一个迷宫问题,设计TD Q-learning非线性逼近算法(异策略)。 迷宫图示见下图,其中红色部分为障碍物,绿色部分为出口: 使用的模型是:非线性模型(两层神经网络) 输入是状态的特征,这里是25维的one-hot编码 输出是动作对应的4维数组 ...
原创
831阅读
0评论
0点赞
发布博客于 3 年前

【强化学习笔记】6.7 基于值函数逼近的强化学习方法-深度强化学习网络(DQN)

深度强化学习网络(DQN)深度强化学习网络(DQN)是一种基于值函数逼近的强化学习方法,是在Q_learning基础上改进的,主要的改进有三个:(1)利用深度卷积神经网络逼近行为值函数,DQN使用的网络结构为三个卷积层和两个全连接层,输入是棋盘图像,输出是动作对应的概率。 (2)利用经验回放(均匀采样)训练强化学习的学习过程,通过对历史数据的均匀采样,实现数据的历史回放,打破采集...
原创
2009阅读
1评论
2点赞
发布博客于 3 年前

【强化学习笔记】6.5 基于值函数逼近的强化学习方法-TD Q-learning非线性逼近代码实现

基于值函数逼近的强化学习方法-TD Q-learning非线性逼近原理见【强化学习笔记】6.1 基于值函数逼近的强化学习方法针对一个迷宫问题,设计TD Q-learning非线性逼近算法(异策略)。 迷宫图示见下图,其中红色部分为障碍物,绿色部分为出口: 使用的模型是:非线性模型(两层神经网络) 输入是状态的特征,这里是25维的one-hot编码 输出是动作对应的4维数组 使...
原创
1147阅读
0评论
0点赞
发布博客于 3 年前

【强化学习笔记】6.4 基于值函数逼近的强化学习方法-TD Q-learning线性逼近代码实现

基于值函数逼近的强化学习方法-TD Sarsa算法线性逼近原理见【强化学习笔记】6.1 基于值函数逼近的强化学习方法针对一个迷宫问题,设计TD Q-learning线性逼近算法(异策略)。 迷宫图示见下图,其中红色部分为障碍物,绿色部分为出口: 使用的模型是:线性模型 输入是状态的特征,这里是25维的one-hot编码 输出是动作对应的4维数组 使用tensorflow进行S...
原创
1810阅读
0评论
0点赞
发布博客于 3 年前

【强化学习笔记】6.3 基于值函数逼近的强化学习方法-TD Sarsa算法线性逼近代码实现

基于值函数逼近的强化学习方法-TD Sarsa算法线性逼近原理见【强化学习笔记】6.1 基于值函数逼近的强化学习方法待更
原创
931阅读
1评论
1点赞
发布博客于 3 年前

【强化学习笔记】6.2 基于值函数逼近的强化学习方法-蒙特卡洛线性逼近代码实现

基于值函数逼近的强化学习方法-蒙特卡洛线性逼近原理见【强化学习笔记】6.1 基于值函数逼近的强化学习方法。针对一个迷宫问题,设计蒙特卡洛线性逼近算法。 迷宫图示见下图,其中红色部分为障碍物,绿色部分为出口: 使用的模型是:线性模型 输入是状态的特征,这里是25维的one-hot编码 输出是动作对应的4维数组 使用tensorflow进行SDG训练。 (踩过的坑:输入输出设计...
原创
1108阅读
1评论
0点赞
发布博客于 3 年前

【强化学习笔记】6.1 基于值函数逼近的强化学习方法

值函数动态规划,蒙特卡洛和时间差分的强化学习,均遵循基本的步骤:先评估值函数,然后根据值函数改进策略。之前介绍的方法也有一个前提条件即状态和行为是离散的,状态空间和行为空间有限,状态值函数为一个索引,状态-行为值函数为二维表格,因此也被成为表格型强化学习。如果状态或者状态-行为的维度多大,比如状态为连续空间,那么就需要考虑逼近值函数了,之后仍然采用策略迭代或者值迭代的方法进行强化学...
原创
1682阅读
0评论
3点赞
发布博客于 3 年前

【强化学习笔记】5.3 无模型的强化学习方法-时间差分之Q_learning算法代码实现

时间差分之Sarsa算法代码实现 原理见【强化学习笔记】5.1 无模型的强化学习方法-时间差分算法#!/usr/bin/env python# -*- coding:utf-8 -*-#import gymimport randomimport numpy as npclass GriDMdp: def __init__(s): s.gamma...
原创
673阅读
0评论
0点赞
发布博客于 3 年前

【强化学习笔记】5.2 无模型的强化学习方法-时间差分之Sarsa算法代码实现

时间差分之Sarsa算法代码实现 原理见【强化学习笔记】5.1 无模型的强化学习方法-时间差分算法
原创
357阅读
0评论
2点赞
发布博客于 3 年前

【强化学习笔记】4.4 无模型的强化学习方法-蒙特卡罗算法与重要性采样代码实现

原理部分请参见【强化学习笔记】4.3 无模型的强化学习方法-蒙特卡罗算法与重要性采样
原创
1025阅读
0评论
1点赞
发布博客于 3 年前

【强化学习笔记】4.2 无模型的强化学习方法-蒙特卡罗算法编程实现

本文给出基于蒙特卡洛的强化学习方法(随机策略计算状态值函数)和基于蒙特卡洛的强化学习方法(ε−greedy策略计算状态行为值函数)两种方法的编程实现。 问题模型是迷宫问题。 基于蒙特卡洛的强化学习方法(随机策略计算状态值函数)#!/usr/bin/env python# -*- coding:utf-8 -*-#import gymimport random#import...
原创
1889阅读
1评论
4点赞
发布博客于 3 年前

【强化学习笔记】4.3 无模型的强化学习方法-蒙特卡罗算法与重要性采样

异策略与重要性采样因为异策略中的行动策略和目标策略不一样,也就是说行动策略产生的数据分布与目标策略的数据分布存在偏差,即即行动策略的轨迹概率分布和改善策略的轨迹概率分布不一样,因此在使用数据进行目标策略评估的时候需要考虑该影响,常用的方法是重要性采样。 重要性采样 ...
原创
1963阅读
1评论
3点赞
发布博客于 3 年前

【强化学习笔记】3.3 基于模型的值迭代方法编程实现

重新回顾一下值迭代算法(原理见3.1 基于模型的动态规划方法): 进行策略改善之前不一定要等到策略值函数收敛,可以在评估一次后就进行策略改善,迭代的终止条件是值函数不再发生变化(就是每个状态下的值函数不再发生变化)。 (1)初始化状态值函数和状态对应的动作(初始化可以采用随机策略,即随机选择状态下的动作) (2)遍历状态下的动作,选出收益最大的动作,作为状态对应的最终动作(贪心策略),更新状...
原创
976阅读
0评论
2点赞
发布博客于 3 年前

【强化学习笔记】3.2 基于模型的策略迭代方法编程实现

待更
原创
1105阅读
3评论
2点赞
发布博客于 3 年前

【强化学习笔记】5.1 无模型的强化学习方法-时间差分算法

【深入浅出强化学习原理入门学习笔记】5.无模型的强化学习方法-时间差分算法在无模型的强化学习方法-蒙特卡罗算法中介绍了蒙特卡罗算法是利用经验平均估计状态值函数,存在一个问题是经验平均要到一次实验结束后才出现,学习速度慢,学习效率不高。重新看一下在蒙特卡罗算法中状态值函数的更新方式 vk(s)=vk−1(s)+1k(Gk(s)−vk−1)vk(s)=vk−1(s)+1k(Gk(s)−vk−1)...
原创
2407阅读
0评论
0点赞
发布博客于 3 年前

【强化学习笔记】4.1 无模型的强化学习方法-蒙特卡罗算法

【深入浅出强化学习原理入门学习笔记】4.无模型的强化学习方法-蒙特卡罗算法再解释一下什么是无模型?无模型就是状态转移函数,回报函数不知道的情况。 在基于模型的动态规划方法中是基于模型的,包括策略迭代法和值函数迭代法,可以统一到广义策略迭代法,即先进行策略评估(计算值函数),然后基于基函数做策略改善。状态值函数和状态-行为值函数的本质是期望,之前动态规划的方法可以通过模型计算期望,在无模型...
原创
2505阅读
1评论
2点赞
发布博客于 3 年前

【强化学习笔记】3.1 基于模型的动态规划方法

【深入浅出强化学习原理入门学习笔记】3.基于模型的动态规划方法首先解释一下什么是有模型和无模型,马尔科夫决策过程用元组表示是(S,A,P,R,γ)(S,A,P,R,γ)\big(S, A, P, R, \gamma\big), SSS为有限状态集, AAA为有限动作集,PPP是状态转移概率(包含动作),RRR为回报函数,γγ\gamma为回报折扣因子。如果其中的PPP,RRR不知道的话,就是...
原创
1756阅读
0评论
1点赞
发布博客于 3 年前

【强化学习笔记】2 马尔可夫决策过程

【深入浅出强化学习原理入门学习笔记】2.马尔可夫决策过程马尔科夫性马尔科夫性{\color{red}{马尔科夫性}}:P[St+1|St]=P[St+1|S1,S2,S3,...,St]P[St+1|St]=P[St+1|S1,S2,S3,...,St]P \big[S_{t+1}|S_t\big]=P\big[S_{t+1}|S_1,S_2,S_3,...,S_t\big] 即系统的下一个状...
原创
787阅读
0评论
1点赞
发布博客于 3 年前

【强化学习笔记】1.绪论

【深入浅出强化学习原理入门学习笔记】1.绪论最近看文章,看到了阿里巴巴搜索推荐团队已经在商品的排序中开始使用强化学习了,并且取得了不错的效果。因此感觉有必要学习一下,买了深入浅出强化学习原理入门这本书,发现真心不错,就想把从中学到的东西做一下笔记。这是一本什么书 介绍强化学习的完全教程强化学习解决什么问题 智能决策问题,确切的说是序贯决策问题,就是需要连续不断做出决策才能实现最终目...
原创
578阅读
3评论
0点赞
发布博客于 3 年前

深度强化学习-环境准备

安装git查看python版本安装pip mac里面python自带easy_install的,最快的应该就是在terminal里面sudo easy_install pip了,网络好几秒就ok。运行完可以用pip help测试一下是否安装成功,成功安装后,直接pip install numpy或者其他包就可以了。ps:用sudo的时候需要输入密码,这个密码是你自己电脑的密码,输入的时候采...
原创
706阅读
0评论
0点赞
发布博客于 3 年前

MAC端Git安装以及环境搭建

转自http://blog.csdn.net/xiaohanluo/article/details/53214933 转载注明出处:http://blog.csdn.net/xiaohanluo/article/details/53214933Git安装 下载Git有两种方法直接下载安装包,Git下载地址 用homebrew指令下载,不过首先需要安装homebrew 在终端执行后...
转载
149阅读
0评论
0点赞
发布博客于 3 年前

互联网公司的技术博客汇总-BAT等

淘宝中间件技术团队博客(推荐) 他们的口号是:致力于成为中国第一,世界一流的JAVA技术团队! 最新文章: 1)阿里巴巴集团宣布正式加入Apache基金会 2)解读calvin 3)中间件技术及双十一实践·稳定性平台篇 4)中间件技术及双十一实践·应用服务器篇 5)中间件技术及双十一实践·消息中间件篇 http://jm.taobao.org/淘宝搜索技术博客(推荐) 经过千...
转载
2333阅读
0评论
1点赞
发布博客于 3 年前

【广告算法工程师入门 39】模型特征-算法基础之线性模型

【规划内容】 【广告算法工程师入门 39】模型特征-算法基础之线性模型
原创
248阅读
0评论
1点赞
发布博客于 3 年前

【广告算法工程师入门 38】模型特征-算法基础之最优化方法

【规划内容】 【广告算法工程师入门 38】模型特征-算法基础之最优化方法
原创
220阅读
0评论
0点赞
发布博客于 3 年前

【广告算法工程师入门 37】模型特征-算法基础之模型构建

【规划内容】 【广告算法工程师入门 37】模型特征-算法基础之模型构建
原创
248阅读
0评论
0点赞
发布博客于 3 年前

【广告算法工程师入门 36】模型特征-算法基础之概论

【规划内容】 【广告算法工程师入门 36】模型特征-算法基础之概论
原创
246阅读
0评论
0点赞
发布博客于 3 年前

【广告算法工程师入门 35】模型特征-CTR模型中的算法优化

【规划内容】 模型特征-CTR模型中的算法优化
原创
527阅读
0评论
0点赞
发布博客于 3 年前

【广告算法工程师入门 34】模型特征-CTR模型中的模型优化

这里推荐几个博客,写的不错 1. 京东广告推荐机器学习系统实践 2. 常见计算广告点击率预估算法总结 3. 精准营销:剖析广告点击率预估系统 4. CTR点击率预估干货分享 5. AdPredictor引发的一系列故事 6. 关于点击率模型,你知道这三点就够了 7. 从逻辑回归到深度学习,点击率预测技术面面观 8. 用户在线广告点击行为预测的深度学习模型...
原创
1050阅读
0评论
0点赞
发布博客于 3 年前

【广告算法工程师入门 33】模型特征-商业产品中的各种质量分及其用途

质量分广告是用户与信息之间的最佳匹配,既然是匹配就需要选择最合适的信息给用户,存在选择,就需要选择的标准,而这些标准需要进行量化,进而会设计各种质量分。广告级别的质量分 广告的点击率,点击满意度,搜索满意度等,这些质量分参与广告的排序计费和准入等创意级别的质量分 标题,描述,样式的展现和转化,图片的选择均需要质量分进行比较,以选出最好的物料。质量分的工程实现 质量分一般也是二...
原创
462阅读
0评论
0点赞
发布博客于 3 年前

谈谈商业分析的思维养成

原文转自: http://mp.weixin.qq.com/s?__biz=MzI0MjA1Mjg2Ng==&mid=209479847&idx=1&sn=695b9e9979ff12aa75b09bc6ff93f804&scene=1&srcid=0927RGYVV7Pg8cttGctnGr0L&key=2877d24f51fa53841b89d53132a00bf7a32068aa06584
转载
1163阅读
0评论
1点赞
发布博客于 3 年前

【转】直播平台如何实现商业变现?

直播平台如何实现商业变现? 96 Levin711 关注很多直播平台现目前仍于烧钱状态,而商业的本质应该是交易和盈利,而不是无限烧钱抢占市场。烧钱抢占市场的仗没法持续太久,因为资本逐利。投资人讲究商业,追逐盈利。今天来聊聊游戏直播平台最可能变现的模式。一、网红变现,做直播平台的广点通随着直播内容的在各个细分领域的发展,旅游、游戏、美食、时尚等垂直领域都有号召力和影响力的网红,越
转载
2078阅读
0评论
0点赞
发布博客于 3 年前

【广告算法工程师入门 32】从直播答题,跳一跳,抢红包等产品策略扯到用户受益商业变现

【该文档已经整理到看云电子书:广告算法学习笔记】最近吃瓜群众在游戏上微信小程序跳一跳和各类直播答题。玩完微信的跳一跳,然后在《冲顶大会》,《芝士超人》,《百万变现》跳一跳,生活变成了一场场撒钱狂欢,有些学霸们又显示自己NB的一面。对于新事物,我总是慢半拍,跳一跳也是上周才接触,直播答题也是这周才看,这个一点都不像是搞互联网的人。可能是做广告机制做多了,现在碰到一个东西和产品,就想这个东西靠...
原创
605阅读
0评论
0点赞
发布博客于 3 年前

【今日头条】2017年短视频创作者商业变现报告

转载:http://www.useit.com.cn/thread-17220-1-1.html 为了解短视频创作者的生存现状,本报告从团队规模、成立时间、团队分工、盈利情况、制作成本、报价等方面,对952 个短视频团队进行调研。在受访对象中,短视频团队主要集中在5 人以下,成立6 个月到一年的时间,59.87% 的短视频团队里没有明确的市场营销人员分工,有47.9% 不能盈利。在实现盈利的短视频
转载
1258阅读
0评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 31】从各项指标情况评估互联网产品的变现思路

【该文档已经整理到看云电子书:广告算法学习笔记】当接手一个新的商业产品的时候,往往需要从各项指标情况,评估产品的变现能力。主要就是产品的展现,点击情况,以及后续的可能转化的空间。同时做到知己知彼,能够快速给出以后的发力点。最近接触了新的产品,参与整个产品的前期调研,数据分析汇报,后续产品设计研发的工作,越来越感觉要学习的东西很多,而自己的工作目标也发生了一定的变化,就是能够达到接手或者领导...
原创
572阅读
0评论
0点赞
发布博客于 4 年前

吸金500亿后的O2O,到底该如何变现?

2015年,是中国O2O创业者最为亢奋的一年。O2O市场尚未拥有造血能力,却被投资机构掩体并热捧。在资本巨浪的推动下,一场场颠覆O2O竞争格局的浪潮愈演愈烈。然并卵,当资本市场遇冷,投资浪潮退去,O2O理想情怀洒落“一地鸡毛”,原本“穿着皇帝新装”的O2O裸奔者清晰可见,没有裸泳的所剩无几。当500亿热钱烧完后,O2O领域并没有因为聚集了BAT等数十家大牌企业、数百位顶尖投资人、数千位金牌高管的豪华
转载
543阅读
0评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 30】从RD的核心能力闲谈到增加广告收益的十八般武艺

【该文档已经整理到看云电子书:广告算法学习笔记】广告算法工程师入门系列的机制设计部分基本上已经总结完了,拖了好久,大部分内容都是点到为止,毕竟我理解的也不是很深入,和那些老司机们也没有办法比,很多内容还需要深入学习研究,而不是浮于表面,对于我来说,能够相对系统的总结这部分的内容已经很不容易了,希望对自己的学习和以后的发展有所帮助。【前方预警,本文有毛概的既视感,不喜慎入】机制部分的内容...
原创
2821阅读
0评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 29】机制设计-关键词拍卖的创意优化,样式优选,高度控制等

创意优化“除非你的广告建立在伟大的创意之上,否则它就像夜航的船,不为人所注意。”—— 大卫·奥格威(David Ogilvy,1911-1999),现代广告业的奠基人,奥美公司创始人。因此,广告的创意的重要性不言而喻。广告的创意决定着广告点击的上限和转化的上限。因此创意优化不仅仅需要SEO,SEM,也需要广告系统的研发者共同来做。广告的创意就是呈现的内容,包括标题和文本,图片,字链,按钮,富媒体(
原创
481阅读
0评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 28】机制设计-关键词拍卖的框架设计,门槛过滤,预算控制等

框架设计目前广告系统常常一次拍完所有的广告位,按照gsp进行排序计费。这时候广告的ctr一般预计的是广告在首位的ctr,这就导致广告先验和后验的点击率相差比较大,为了消除位置偏置的影响,有时候会引入coec特征。这种实现方法是基于点击可分离假设的。但是点击可分离假设在真实的环境下不一定满足,首先位次的预估不准,其次上下文广告是相互影响的。那最极端的例子,也是最优的选择就是对候选广告做全排列,得到所
原创
500阅读
0评论
0点赞
发布博客于 4 年前

URL特殊字符及编码值列表大全

大家上网的时候一定会看到很多这类情况有的网页地址都是%22%32%11%23%21等 这种机器语言恐怕只有机器能马上辨认吧现在我把大概知道的总结一下URL编码:怎样读取特殊字符 从外部文本载入到动态文本的时候,一些特殊字符(如&/%等)无法正常现实,有的符号还会导致这个符号后面的字符无法现实(如&),这时候我们就要将这些特殊字符进行URL编码,以下是各个特殊字符的URL对应编号: backsp
转载
3277阅读
0评论
0点赞
发布博客于 4 年前

分布式机器学习系统之 ANGEL

引自:http://www.ccf.org.cn/c/2017-08-16/603621.shtmlAngel: a new large-scale machine learning systemANGEL:一个新型的分布式机器学习系统阅读量:36崔斌,余乐乐收藏本文PDF在线浏览下载本文    混合并行分布式机器学习异构感知SGD算法引言当前,人工智能在多个领域的强势崛起,让人们领略到
转载
2458阅读
0评论
0点赞
发布博客于 4 年前

腾讯分布式机器学习系统sabaton和AnyEmbedding介绍

文章转自腾讯社交广告技术团队火光摇曳2016年下半年我们开发了一个分布式机器学习系统sabaton, 并将它运用到转化率预估和LookAlike业务上去, 取得了不错的效果. 详情链接继2016年下半年我们开发了分布式机器学习系统Sabaton并且成功应用于腾讯广告业务之后,2017年上半年我们又开发(推出)了分布式Embedding训练系统AnyEmbedding。基于腾讯多源异构数据现状,比如
转载
584阅读
0评论
0点赞
发布博客于 4 年前

百度网盟内容匹配广告和展示广告相关技术

第三期百度计算广告学沙龙( http://wenku.baidu.com/course/view/1488bfd5b9f3f90f76c61b8d ) 介绍了内容匹配广告和展示广告相关技术。本博客记录观看内容匹配广告部分的一些笔记, 绝大多数为原slide内容,只做简单的整理。背景 涉及四方:网民(Users) + 网站主 (Publishers) + 广告主(Advertisers) + 网盟 (
转载
1013阅读
0评论
0点赞
发布博客于 4 年前

搜索引擎广告的检索和匹配算法

1.搜索引擎广告的检索 广告检索的过程: 广告检索就是通过对给定的网民的信息需求,在广告库(Ad Set)中找到相关的广告,简单的来看,可以把Ad Retrieval当做是文本检索(TR)领域的一个应用。 文本检索的两种思路: Doc Selection(Classification) 和 Doc Ranking(Ranking),在文件检索中,通常利用相似度
转载
4738阅读
0评论
0点赞
发布博客于 4 年前

解密Airbnb的定价算法

对于计划出租房屋的房主,你应该将房屋的租金设定为多少呢?或者对于租房的顾客而言,应该给自己的租房支付多少呢?不管是对于一次有计划的远足,还是一次说走就走的旅行,为租房付出多少才真正合适呢?回答这些问题并不容易。事实上,可以通过将潜在的租房列在我们网站—Airbnb上来实现,Airbnb是一家联系旅游人士和家有空房出租的房主的服务型网站,它可以为用户提供各式各样的住宿信息。在焦点小组,我们观察到人们在
转载
6145阅读
0评论
1点赞
发布博客于 4 年前

【广告算法工程师入门 27】机制设计-考虑用户体验的机制设计方法与实践

正如前文所说,搜索广告是涉及搜索引擎,广告主,用户三方的商业系统,搜索引擎以损失部分用户体验换取营收和利润,如果忽视用户体验,SE的长期利益会受损,因此在机制设计时,十分有必要考虑用户体验。首先需要量化用户体验,常用的指标有相关性,搜索满意度,点击满意度,着陆页质量度等。广告的用户体验量化指标,需要专门的数据标定,一般情况也可以通过半监督学习的方法进行处理。量化后的用户体验指标可以作为排序的一个因子
原创
383阅读
0评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 26】机制设计-考虑客户ROI的机制设计方法与实践

ROI广告属于商业产品,为广告主宣传产品,提高营收服务。广告主在进行广告投放时,十分关注成本和转化的情况,也就是说投资回报比(ROI)是广告主的终极目标,投资回报率(ROI)=(收益-成本)/成本×100%。而目前大多数的出价表达上还主要是以点击进行出价,这是广告主与媒体方达到的一个折中方案。作为机制的设计方,之前仅仅靠增加点击,提高CTR的方法并没有着眼于广告主的转化,一些提高CTR涨点击的方法
原创
703阅读
0评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 25】机制设计-客户表达,智能出价和客户ROI优化

在机制的可表达性一文中,已经提到了客户表达的概念。 机制可表达性就是广告主参与机制设计过程,并影响机制结果的能力和程度。如广告主能够选择cpc以外的计费方式(cpm,cpa等),广告主是否能够通过动态竞价(或者智能出价)保证展现量,点击量,或者保证展现在第一个位次,或者说广告主能否对每个位次都能进行出价……机制设计者是游戏规则的制定者,让客户充分表达各自的需求,会提升拍卖效率。包括谷歌,百度,阿里
原创
710阅读
0评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 24】机制设计-关键词拍卖的保留价设计与思考

终于腾出时间整理一下博客了,之前总感觉一些事情,比如说写博客挺简单的,但是真正动手写的时候才发现好难呀,很多东西也仅仅是浮于表面,缺乏真正去做的决心,也往往是先开个头儿,或者把框架搭起来,然后再补充!在搜索广告的机制设计中,关键词拍卖的保留价设计是一项十分重要和具体的工作,但是听说很多知名的互联网公司,其广告业务中甚至是没有保留价的。这就需要从源头考虑,为什么要设置保留价?之前学习过设置保留价可能使
原创
761阅读
0评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 23】机制设计-GSP机制下的收入优化

本文是对这篇文章的翻译和学习笔记: Revenue optimization in the generalized second-price auction作者:DAVID R. M. THOMPSON, LEYTON-BROWN 摘要基于GSP机制的广告拍卖已经成为事实标准,我们研究该机制下拍卖的收入优化问题。我们先测试几种GSP机制的变量(包括压缩因子和不同的保留价),研究怎么优化这些
原创
590阅读
1评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 22】机制设计-传统机制设计演变与收入优化思考

机制设计的内容机制设计分配函数和计费函数,分配函数一般就是排序函数了,那就需要考虑为哪些东西排序(广告的样式,图片,广告本身等),排序函数的具体形式(线性,折线,曲线等),排序函数中的可调参数等,一般排序函数决定这分配函数的形式以及各种策略。 机制设计的方法均衡分析 之前学习的机制设计方法基本上都是在分析一种机制所能达到的均衡,均衡是对博弈的终止状态(稳定状态),在这种情况下可以精确地获得博
原创
566阅读
0评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 21】机制设计-机制的可表达性

机制的可表达性在关键词拍卖中,大部分是点击计费的,并且广告主对所有广告位只出一个报价(即单一报价)。将这两个问题进行扩展,就涉及到机制的可表达性问题了。机制可表达性就是广告主参与机制设计过程,并影响机制结果的能力和程度。如广告主能够选择cpc以外的计费方式(cpm,cpa等),广告主是否能够通过动态竞价(或者智能出价)保证展现量,点击量,或者保证展现在第一个位次,或者说广告主能否对每个位次都能进行
原创
654阅读
0评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 20】机制设计-从GSP机制到VCG机制

机制设计在前文【广告算法工程师入门 9】机制设计-博弈论基础中已经谈过了微观经济学与博弈论的区别,在微观经济学中市场机制是一个『看不见的手』,调整市场进入均衡状态。在博弈论中,机制设计者(委托人)设计规则,代理人参与规则,进行博弈,达到纳什均衡。可以看出机制设计是一只『可看见的手』,调整市场进入均衡状态。微观经济学研究的完全竞争或者完全垄断市场是极端理想情况,而博弈论研究的市场进一步贴近现实市场,
原创
1904阅读
0评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 19】机制设计-GFP和GSP下的策略行为与均衡分析

关键词拍卖基本假设点击率分离假设:广告的最终点击率等于广告位的点击率与广告文本的点击率的乘积。两者是独立的行为。点击率无外部性假设:广告的最终点击率与其他同时展现的广告内容无关广告位的点击率随着位次的增加依次递减。 广告主的策略行为广告位资源是有限的,广告主要通过博弈获得广告位。特别注意如果只有一个广告位的时候,广告主的策略行为与之前分析不完全信息静态博弈的单物品拍卖类似。但是对于搜索引擎来
原创
790阅读
0评论
0点赞
发布博客于 4 年前

常用数学符号的 LaTeX 表示方法

转自:http://www.mohu.org/info/symbols/symbols.htm (以下内容主要摘自“一份不太简短的 LATEX2e 介绍”,文件下载地址:http://www.mohu.org/info/lshort-cn.pdf)1、指数和下标可以用^和_后加相应字符来实现。比如:2、平方根(square root)的输入命令为:\sqrt,n 次方根相应地为: \sqrt[n]
转载
220阅读
0评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 18】机制设计-关键词拍卖与机制演变

关键词拍卖关键词广告是由用户的搜索行为(如输入检索词)触发的广告服务,包括普遍搜索(如百度,谷歌,雅虎等),也包括垂直搜索(如淘宝,京东等),而非关键词触发的广告(如facebook,腾讯社交广告,今日头条广告,新浪微博广告,应用app中广告)也是由用户画像等信息命中广告主买定的人群等。本质上都是广告位通过拍卖的形式售卖给广告主。关键词拍卖与传统的纸媒广告、户外广告、影视广告的主要不同点在于:关
原创
470阅读
0评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 17】机制设计-有效机制与VCG机制

有效机制 VCG机制
原创
1178阅读
0评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 16】机制设计-最优拍卖机制设计

最优机制前文已经介绍到了,如果直接机制(P,M)是激励兼容的,则对所有的竞买人及真实估价vi,其预期支付只与分配规则相关,支付规则决定一个常数项。 (注意这里不再要求对称性)通常情况下售卖者是机制的设计者,那么他们往往考虑在满足激励兼容和个体理性的约束下,设计一种最大化期望收益的机制,这种机制就是最优机制。之前关于定价的讨论是:如果售卖者能够知道竞买者的真实估价的话,那直接就可以按照最高估价售卖即
原创
1799阅读
0评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 15】机制设计-基础知识

前文介绍的拍卖是物品出售的众多方法之一,还有很多种定价方法,对于物品售卖方来说,需要确定的是以什么样的形式出售物品,使得利润最大化,这就是机制设计的问题。 机制的定义 显示原理 激励兼容 收益等价 个体理性 【wait】
原创
624阅读
0评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 14】机制设计-带有保留价的拍卖与最优保留价

带有保留价的拍卖前文提到了售卖者即使在收益等价原理的情况下,还有一些选择来保证收益最大化,比较常见的措施是入场费,保留价等。保留价是售卖者设置的,当拍卖胜出者的最终支付价格小于该值时,售卖者有权要求卖胜出者支付该保留价。这相当于在拍卖模型中添加了新的假设:保留价 竞买人的支付价格不小于保留价当售卖者设置保留价后,竞买者的策略行为将发生变化。 对于英式拍卖和第二密封价格拍卖而言,心理价值小
原创
1265阅读
0评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 13】机制设计-私人价值模型下四种拍卖形式的报价策略与均衡分析

私人价值模型下四种拍卖形式的报价策略与均衡分析 回顾私人价值模型的五个假设:风险中兴,私有估价,独立性,对称型,理性。四种拍卖形式:英式拍卖,荷兰式拍卖,第一价格密封拍卖,第二价格密封拍卖从竞价策略上分析,荷兰式拍卖与第一价格密封拍卖存在等价策略。在私人价值假设(仅需这一个假设)上,英式拍卖与第二价格密封拍卖存在等价策略。因此来说仅仅分析第一价格密封拍卖和第二价格密封拍卖即可。这里的策略就是报
原创
945阅读
0评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 12】机制设计-单物品拍卖与私人价值模型

单物品拍卖通常意识下的拍卖都是单个物品拍卖,这个物品不可分割,这是最简单的拍卖形式了,在真实的广告位或者关键词拍卖中,有时候是以多物品拍卖的形式进行的。为了简化分析,从最简单的单物品拍卖开始研究竞买人的报价策略。如果说出售者知道所有竞买人对物品的估价,那么出售者的最优机制就是以竞买人的最高估价为固定价格出售,这也是为什么机制设计者总是希望竞买人能够说出心理价值,也就是说真话。但是出售者是不知道竞买
原创
507阅读
0评论
0点赞
发布博客于 4 年前

互联网广告算法工程师写的资料汇总

from:http://blog.csdn.net/mytestmy/article/category/1883651互联网广告系统综述八机器学习与数据互联网广告系统综述八机器学习与数据 写好标题,却迟迟不知道怎么动手,最近机器学习的一个分支——深度学习,真是火得没朋友啊,过去十几年的最热门的核方法,被成功的放到一边去了,整个工业界开始重新聚焦到神经网络这边来了。 方法万能论总是那么让人热血沸腾的
转载
337阅读
0评论
0点赞
发布博客于 4 年前

【广告算法工程师入门 11】机制设计-拍卖理论基础

价格人被价格包围着,衣食住行都有价格,劳动有价格,时间有价格,精神有价格,甚至生命有价格。价格是重要的事情,关系企业的发展和生存,关系人生活的方方面面。生活中商品的价格对于我们来说往往都是固定的,偶尔也会砍砍价,在卖者与买者之间达到均衡,商品或者服务的定价策略是经济学中的重要内容。如果看到上一篇文章中俞军的访谈录,可能会理解一下价格策略是公司最需要研究的东西。定价策略在这里就不谈了,笔者也不懂。有
原创
547阅读
0评论
0点赞
发布博客于 4 年前