其实求余与求模不同!,不信请看
a | b | C语言:a%b (求余) | Python Shell: a%b(取模) |
-3 | -5 | -3 | -3 |
-3 | 4 | -3 | 1 |
-3 | 2 | -1 | 1 |
-1 | 6 | -1 | 5 |
-4 | -3 | -1 | -1 |
2 | 4 | 2 | 2 |
5 | 3 | 2 | 2 |
4 | -7 | 4 | -3 |
4 | -3 | 1 | -2 |
-6 | -5 | -1 | -1 |
密码学里经常有要用到mod运算,好多人怎么都搞不懂这个是如何计算的,其实 求余与求模的运算符号都是mod(在高级语言中符号都是%),下面我们来分析一下:
Mod(求模或求余)
1. 求余:取整除后的余数,例如:
10 MOD 4 = 2; -17 MOD 4 = -1; -3 MOD 4 = -3; 4 MOD (-3) = 1; -4 MOD 3 = -1;
如果a MOD b是异号,那么得出的结果符号与a相同; 当然了,a MOD b就相当与a-(a DIV b)*b 的运算。例如:
13 MOD 4 = 13 - (13 DIV 4) * 4 = 13 -12 = 1
(异号求余规则:A % B = C, 则C的值为:|A| % |B|的结果,让这个结果与A同号,然后再和B相加。比如:|-15| % |4| = 3,
然后-3 + 4 = 1, 如果是15 % (-4), 则结果为 3 + (-4) = -1, 注意,一定是两个数异号时才是这种规则,同号跟一般的算法相同)
2. 求模:规定"a MOD b"的b不能为负数,其运算规则如下:
1) 当a > b时,不断从a中减去b,直到出现了一个小于b的非负数。
例如:8 MOD 3 = 2
2) 当a < b, 且 a > 0时,结果为a。
例如:3 MOD 8 = 3
3) 当a < b, 且 a < 0时,则b不断的加到a上,直到结果是一个小于b的非负数为止。
例如: -3 MOD 4 = 1, -4 MOD 3 = 2
注意:当a、b全为正数时,无论是"求余"还是"求模",得到的结果是相同的。如:22 MOD 6 = 4, 只有当a < 0时,两种运算结果
不同。
例如:N为四位数7341, 可用下面的方法分离出它的个、十、百、千位。
7431 MOD 10 =1 (个位数)
(7431 MOD 100) DIV 10 = 4 (十位数)
(7431 MOD 1000) DIV 100 = 3 (百位数)
7431 DIV 1000 =7 (千位数)
此外,利用 a MOD b,可以判断a能否被b整除。当a MOD b = 0时,a能被b整除。
注意:a,b都必须为整数。如:50.0 MOD 20.0 是不可以的。
注:求模可看成是定位,如%10定位到个位,%100定位到百位。DIV可以看成是求该位确定数。
现有一个数M<9999,用求模和求余分离出它的千、百、十、个位(用qian,bai,shi,ge)表示四个数,求程序。
if(M>999) {
qian=M/1000;
M=M%1000;
} else qian=0;
if(M>99) {
bai=M/100;
M=M%100;
} else bai=0;
if(M>9) {
shi=M/10;
M=M%10;
} else shi=0;
ge=M;
以上分析来自互联网.
可以使用科学计算器上面的mod来运算。
也可以在谷歌搜索栏中输入运算式,如 11 mod 26