自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 Dynex阿波罗芯片研发进展解析

Dynex 公司正在研发的 “阿波罗”芯片是一款革命性的混合架构处理器。它核心采用时钟less、连续时间的模拟计算单元构建了一个高度并行的类脑( neuromorphic )结构,以实现高效灵活的并行计算。

2025-09-15 19:01:42 877

原创 英国FSE评估报告:Dynex是一项杰出且真正有意义的技术成就

这项研究令我们满意地表明,Dynex 完全有能力提供他们声称可以提供的结果。此外,有理由相信 Dynex 已经展示的能力水平会对某些目标用例产生影响。

2025-09-02 17:21:52 723

翻译 量子计算领域的一项新突破!Dynex 的室温混合量子概率计算芯片Apollo

Apollo 采用 SPDC,这是一种非线性光学过程,其中泵浦光子在β-硼酸钡 (BBO) 等晶体中衰变成两个能量、动量和极化守恒的低能光子(信号光和闲置光)。

2025-07-28 08:18:10 149

原创 deepseek一直思考: n = 100 的 n 皇后问题。Dynex 用 10,000 个量子比特,在 200 秒内解决。

n = 100 的 n 皇后问题

2025-07-14 08:39:13 221

原创 量子算法应用广泛,小白车手 用大牛币Dynex量子辅助驾驶系统 挑战 F1赛车手

马斯克的无人驾驶出租车,我们都了解了。但是,你们了解大牛币Dynex的量子辅助驾驶系统么?

2025-07-11 09:58:37 373

原创 Dynex 量子实验室:qdLLM 开发路线图——扩展至 400B 参数

qdLLM 小型模型的表现已超越基准,为 dApp、强大的 AI 代理等铺平了道路。更高的实用性将直接转化为$DNX的更高价值。

2025-04-29 20:40:26 368

转载 Dynex大牛量子云的qdLLM大语言模型基准测试报告

Dynex QSVM PyTorch 层在所有指标上均以 100.00% 的成绩超越 D-Wave 量子机(HQPU、QPU)、模拟退火和 Scikit-Learn。

2025-04-16 22:55:20 149

原创 在量子创新力量的驱动下, 大牛量子Dynex正迈向新的篇章

该课程将扩散技术与量子精度相结合,将噪声转化为清晰锐利的输出,比传统模型更快、更智能,重新定义。他们不是逐字构建文本,而是从一个混乱、混乱的版本开始,逐渐对其进行“去噪”——比如锐化模糊的照片,直到它变得清晰。量子处理器同时探索多种可能性,帮助模型做出更智能、更一致的决策。简而言之,“扩散”=将混乱的输入精炼为精炼的输出。qdLLM通过在混合系统中结合量子和经典技术,创建了更连贯、逻辑上合理、上下文感知的响应——更快、错误更少。的实用性,刺激了需求,并巩固了其作为蓬勃发展的生态系统支柱的地位。

2025-04-10 16:08:17 487

原创 介绍 Dynex 量子扩散大语言模型 (qdLLM):一种量子增强语言模型

Dynex 的 qdLLM 是迈向实用量子增强型 AI 的重要一步,展示了量子计算如何以有意义的方式增强经典 LLM。Dynex 是量子即服务 (QaaS) 技术领域的全球领导者,提供经济实惠、可访问且可扩展的量子计算解决方案,并以坚定的道德诚信承诺为基础。不同,基于扩散的 LLM 通过迭代地对初始的屏蔽或噪声标记序列进行去噪,直到出现一致的响应。选择过程中,qdLLM 实现了全新的性能水平,利用量子优化的强大功能来增强语言生成。qdLLM 的关键创新是使用量子计算来优化每个扩散步骤中的令牌选择。

2025-03-14 20:39:56 894

翻译 Dynex:量子退火的本机支持

Dynex克服这些障碍对于推进量子计算领域以及实现更准确和可扩展的模拟至关重要,这些模拟可以弥合当前量子能力与其潜在应用之间的差距。

2024-11-08 10:24:56 126

翻译 Dynex:量子门电路的本机支持

Dynex平台突破了量子计算可能性的界限

2024-11-08 10:22:07 108

原创 Dynex用例2:实现在 Dynex 平台上使用的量子单图像超分辨率算法

该算法演示了如何将量子 SISR 表述为稀疏编码优化问题,并通过 Dynex SDK 使用 Dynex 神经形态计算平台来解决该问题。

2023-12-02 17:51:22 726

转载 Dynex用例1:Dynex 平台上的 RNA 折叠

Dynex SDK提供了神经形态/QUBO采样器,可以从任何Python代码中调用。

2023-11-29 19:38:11 266

原创 ironfish命令行安装

你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:撤销:Ctrl/Command + Z重做:Ctrl/Command + Y加粗:Ctrl/Command + B斜体:Ctrl/Command + I标题:Ctrl/Command + S

2023-04-30 10:44:03 1156 2

量子计算英国FSE评估报告:Dynex是一项杰出且真正有意义的技术成就

内容概要:本文是Finserv Experts(FSE)对Dynex量子仿真平台进行独立评估的技术报告,旨在验证其宣称的性能优势和现实应用价值。评估围绕六个典型量子计算场景展开:n位加法器、旅行推销员问题、反向电路执行、肖尔算法、蛋白质折叠和使用Grover算法的反向散列。结果显示,FSE成功复现了Dynex在所有测试中的性能表现,并证实其平台在处理规模和运行效率上远超当前公开的量子仿真器和硬件平台,且性能随问题复杂度呈亚指数增长。尽管部分结果尚未超越经典最优算法,但在多个领域展现出潜在现实价值。; 适合人群:具备一定量子计算、计算机科学或相关技术背景的研发人员、技术决策者及对量子仿真平台实际应用感兴趣的科研与产业界人士。; 使用场景及目标:①验证Dynex量子仿真平台在关键算法上的性能断言是否可独立复现;②评估其在金融建模、物流优化、药物研发、网络安全等现实场景中提供可衡量商业价值的潜力;③为后续技术集成与商业化应用提供依据。; 阅读建议:此报告强调透明性与可重复性,附有源代码供验证。读者应结合具体测试案例深入理解其方法论,并关注Dynex平台与经典解决方案的对比,以客观评估其在真实应用场景中的优势与局限。

2025-09-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除