介绍 Dynex 量子扩散大语言模型 (qdLLM):一种量子增强语言模型

大型语言模型 (LLM) 的快速发展推动了自然语言理解和生成领域的重大进步。然而,基于扩散的传统语言模型在连贯性、逻辑一致性和推理效率方面仍然面临挑战。Dynex 推出了一项突破性解决方案:Dynex 量子扩散大型语言模型 (qdLLM)。通过将量子计算集成到基于扩散的 LLM 标记选择过程中,qdLLM 实现了全新的性能水平,利用量子优化的强大功能来增强语言生成。

使用 Dynex 的 qdLLM(采用小型 8B 量子增强扩散模型)的示例提示和响应

基础课程:基于扩散的LLM 

扩散模型源自生成建模技术,其中结构化数据从初始随机状态逐渐细化。与一次一个标记按顺序生成文本的自回归模型不同,基于扩散的 LLM 通过迭代地对初始的屏蔽或噪声标记序列进行去噪,直到出现一致的响应。

传统扩散LLM (LLaDA) 的概念概述。(a)预训练。LLaDA 在文本上进行训练,所有标记均以相同的比率 t ∼ U[0, 1] 独立应用随机掩码。(b)SFT。只有响应标记可能被掩码。© 采样。LLaDA 模拟从 t = 1(完全掩码)到 t = 0(未掩码)的扩散过程,使用灵活的重新掩码策略在每个步骤同时预测所有掩码。

该过程遵循以下步骤:

  1. 前向扩散(噪声注入):通过用噪声(例如,嵌入空间中的掩码标记或高斯噪声)替换标记,逐渐破坏格式良好的文本序列。这会将有意义的文本转换为更随机的状态。
  2. 逆扩散(去噪过程):模型使用剩余标记的上下文信息,通过迭代预测每一步要揭示哪些标记来学习恢复原始序列。
  3. 基于分数的标记选择:在每个步骤中,评分函数都会评估可能的标记完成情况,从而引导去噪过程实现合理的高质量输出。

传统扩散LLM (LLaDA) 性能:零样本/少量样本基准。LLaDA 模型从零开始扩展到前所未有的 8B 参数规模,实现了与强大法学硕士 (LLM) 相媲美的性能 (Dubey 等人,2024 年)

例如,Inception Labs 的扩散大型语言模型 (dLLM) 通过将输出从初始嘈杂状态细化为连贯文本,引入了一种新颖的文本生成方法。这种由粗到细的生成过程支持并行标记生成,从而显著提高速度和效率。值得注意的是,dLLM 生成标记的速度比传统自回归模型快 5-10 倍,在标准硬件上实现每秒超过 1000 个标记的吞吐量。此外,这种并行性允许更有效地利用 GPU,与传统 LLM 相比,成本降低了 10 倍。

虽然扩散模型在处理复杂的文本依赖关系时具有更大的灵活性,但它们在每一步选择最相关的标记时带来了计算挑战。这就是 qdLLM 利用量子计算来优化标记选择的地方

qdLLM 中的 Quantum 优势

qdLLM 的关键创新是使用量子计算来优化每个扩散步骤中的令牌选择。Dynex 的量子增强方法不再仅仅依赖经典的启发式方法或随机方法,而是将令牌揭开作为量子算法任务。通过利用 Dynex 的量子平台,qdLLM 可以有效地识别每个步骤中最相关的令牌组合,从而显著提高响应质量。

量子标记生成网格示例(深色表示在采样后期预测的标记,而浅色表示早期预测的标记)

qdLLM 的工作原理

qdLLM 的架构由三个主要组件组成:

  1. 词法预测核心LLM——该模块根据上下文和之前的扩散步骤预测可能的词法完成,确保语法正确性和语义连贯性。
  2. 用于令牌选择的量子模块——在每个扩散步骤中,量子退火器选择要揭示的最佳令牌,解决最大化连贯性、逻辑一致性和上下文相关性的量子算法问题。
  3. 混合编排层— 此层管理量子和经典组件之间的相互作用。在早期扩散步骤中,量子退火确定响应的基础元素。随着后续步骤中信心的增加,系统将过渡到经典方法进行微调令牌选择和细化。

混合量子-经典方法的优势

通过结合量子和经典方法,qdLLM 实现:

  • 提高连贯性——量子增强的令牌选择过程可带来更自然流畅的响应。
  • 更高的逻辑一致性——量子优化确保答案的关键要素尽早建立,从而减少逻辑错误。
  • 更好的事实准确性——结构化的扩散过程最大限度地减少了幻觉,并使反应与预期的情况保持一致。
  • 高效推理——通过在早期阶段利用量子计算并在后续步骤中利用经典细化,qdLLM 平衡了计算效率和响应质量。

解锁量子语言模型的未来

Dynex 的 qdLLM 是迈向实用量子增强型 AI 的重要一步,展示了量子计算如何以有意义的方式增强经典 LLM。随着量子硬件和算法的不断发展,自然语言处理进一步突破的可能性越来越大。通过将量子优化集成到基于扩散的文本生成中,Dynex 为下一代 AI 驱动的应用程序铺平了道路。

关于Dynex

Dynex 是量子即服务 (QaaS) 技术领域的全球领导者,提供经济实惠、可访问且可扩展的量子计算解决方案,并以坚定的道德诚信承诺为基础。

Dynex 利用多达 100 万个算法量子位的神经形态量子计算模拟,大规模解决现实世界的问题。在学术界和人工智能、制药、金融、航空航天等不同行业中,Dynex 推动了最复杂领域的指数级增长,满足了对先进计算解决方案日益增长的需求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值