刷子只能是一个方向,可以竖着把一块板子都刷完,也可以横着把几块板子刷一节。问最少需要刷几次能把所有板子都刷完。
超级好玩的一道题,一开始二分着分治,发现有一些情况无法处理 01110 与11010,向上传递的时候,不知道是max还是求和。感觉这道题线段树也是可以做的。后来发现好玩的地方在于每次都找最小值那里切割就好了,然后每一轮都记录已经刷了的高度,最多就是区间长度,两者比较得出结果。
代码:
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std;
int n;
int val[5005];
int dfs(int ll, int r,int height)//前两个参数代表所要刷的区间,最后一个参数代表已经刷的高度
{
//从最小值那里分治,而不是二分区间,这点没有想到
if (ll > r)
return 0 ;
int min_value = 1e9 + 7;
int i, pos, sum;//记录当前区间的最小值和位置。然后看现在区间内有多少栅栏是大于所刷高度的,这个值就是最多刷的次数,即竖着刷
sum = 0;
for (i = ll; i <= r; i++)
{
if (val[i] < min_value)
{
min_value = val[i];
pos = i;
}
if (val[i] > height)
sum++;
}
int temp = min_value - height;
return min(sum, dfs(ll, pos - 1, val[pos]) + dfs(pos + 1, r, val[pos]) + temp);
}
int main()
{
int i, res;
scanf("%d", &n);
for (i = 1; i <= n; i++)
scanf("%d", val + i);
res = min(n, dfs(1, n, 0));
printf("%d\n", res);
//system("pause");
return 0;
}