Linux安装Ollama实现本地AI服务的搭建

一、Ollama是什么
Ollama是一个开源的大型语言模型服务工具,它帮助用户快速在本地运行大模型,通过简单的安装指令,可以让用户执行一条命令就在本地运行开源大型语言模型,例如 Llama2。这个框架简化了在Docker容器内部署和管理LLM的过程,使得用户能够快速地在本地运行大型语言模型。
Ollama 将模型权重、配置和数据捆绑到一个包中,定义成 Modelfile。它优化了设置和配置细节,包括 GPU 使用情况。

二、Ollama的优点
1、易于使用
Ollama提供了一个简单的API,使得即使是没有经验的用户也可以轻松使用。此外,它还提供了类似ChatGPT的聊天界面,用户无需开发即可直接与模型进行聊天交互。

2、轻量级
Ollama的代码简洁明了,运行时占用资源少。这使得它能够在本地高效地运行,不需要大量的计算资源。

3、可扩展
Ollama支持多种模型架构,并可以扩展以支持新的模型。它还支持热加载模型文件,无需重新启动即可切换不同的模型,这使得它非常灵活多变。
模型库下载地址

4、预构建模型库
Ollama提供了一个预构建模型库,可以用于各种任务,如文本生成、翻译、问答等。这使得在本地运行大型语言模型变得更加容易和方便。

三、Linux环境下安装Ollama
方案一:
直接使用官网提供的安装命令(官网下载地址

curl -fsSL https://ollama.com/install.sh | sh

在这里插入图片描述
命令操作的确简单,但是官网上下载有个问题,就是网络传输的问题,有时远程下载会很慢,经常导致下载失败。

方案二:
使用Docker方式构建部署Ollama服务

1、创建安装脚本文件

vi install-ollama-centos7.sh

写入下面的内容:

#!/bin/bash

info(){
   
   
  echo -e "\033[34m 【`date \'+%Y-%m-%d %H:%M:%S\
### 如何在 Linux 上通过 Ollama 部署和运行本地机器学习模型 要在 Linux 系统中通过 Ollama 部署和运行本地机器学习模型,可以按照以下方法操作: #### 安装 Ollama 首先,在 Linux 环境下安装 Ollama 是必要的。可以通过官方文档中的命令完成安装过程[^1]: ```bash curl https://ollama.ai/install.sh | sh ``` 此脚本会自动下载并配置好 Ollama 的环境。 #### 下载支持的模型或转换自定义模型 如果目标模型已经存在于 Ollama 支持的模型库中,则可以直接拉取该模型: ```bash ollama pull llama2 ``` 上述命令用于获取 `Llama2` 模型作为示例。 然而,当所需模型未被包含于默认列表时,GGUF 格式的兼容性提供了解决方案。GGUF(GPT-Generated Unified Format)是一种通用文件格式,允许用户将自己的预训练模型转化为适合 Ollama 使用的形式。具体步骤如下: ##### 转换模型到 GGUF 格式 假设已有其他框架下的模型权重文件(如 PyTorch 或 TensorFlow),需先将其转为 GGUF 文件。这通常涉及编写一段 Python 脚本来提取参数,并保存至指定路径。以下是伪代码展示如何实现这一功能: ```python import torch def convert_to_gguf(model_path, output_path): model = torch.load(model_path) gguf_data = {} # 假设这里有一些逻辑来解析原始模型结构并将数据存储到字典gguf_data中 with open(output_path, 'wb') as f: import struct for key, value in gguf_data.items(): f.write(struct.pack('<Q', len(key))) # Write length of the string. f.write(key.encode('utf-8')) # Write the actual string bytes. if isinstance(value, float): # Handle floats differently. f.write(struct.pack('<f', value)) elif isinstance(value, int): # And integers too. f.write(struct.pack('<q', value)) convert_to_gguf("path/to/your/model.pth", "output.gguf") ``` 注意:实际应用过程中可能需要调整细节部分以适配不同类型的神经网络架构。 ##### 加载自定义 GGUF 模型 一旦成功创建了 `.gguf` 文件之后,就可以利用 ollama 工具加载它: ```bash ollama run --model=path/to/output.gguf ``` 这样便完成了整个流程——从准备阶段直至最终执行环节均覆盖完毕。 #### 测试部署效果 最后一步是对新加入的模型进行测试验证其可用性和性能表现情况。例如发送一条简单的请求看看返回结果是否合理: ```bash echo "What is your name?" | ollama chat --model=output.gguf ``` 以上就是关于怎样借助 Ollama 平台在基于 Linux服务器端快速搭建起属于自己的 AI 推理服务的整体介绍。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

漂泊之云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值