使用Kadane算法可以很方便地求解一维数组的最大连续子序列之和。
下面是Kadane算法的延伸,在二维数组中求解最大矩形。
思路是要利用一维数组的求解方法来求解二维,假设现在要求以i列开始到j列结束的最大和,不能是i和j之间的,必须以i和j是开始和结束。可以把i和j之间的列相加,最终得到一个一维数组,那么这个一维数组的最大值就是i和j的最大值,这是因为这个一维数组中存的就是每一行的和,与congi到j的矩形一一对应。
那么如何求i到j的最大值。即可以是i和j之间的。只需要遍历所有的i,j对,利用上面的方法求出所有的最大值,取其中的最大值。也就是说(i,i+1),(i,i+2).....,(i,j), (i+1,i+2),....,(i+1,j)........。
时间复杂度,i,j对需要O(col*col),每一次i,j对需要执行一次一维数组的Kadane,是O(row)的。因此总的是O(col*col*row)。
当然我们也可以以行的角度来看,那么就是O(col*row*row)。
这应该也算是一个优化,根据行数和列数的大小来决定以哪种视角来看。
代码:
public int maxRecInMatrix(int[][] matrix){
if(matrix == null || matrix.length == 0) return 0;
int[] cash = new int[matrix.length];
int left = 0, right = 0, up = 0, down = 0, max_maxtrix = matrix[0][0];
for(int i = 0; i < matrix[0].length; i++){
Arrays.fill(cash, 0);
for(int j = i; j < matrix[0].length; j++){
//add col to cash
for(int k = 0; k < matrix.length; k++){
cash[k] += matrix[k][j];
}
int cur_max = 0, max_array = cash[0], up_local = 0, down_local = 0, cur_up = 0, cur_down = 0;
for(int k = 0; k < cash.length; k++){
if(cash[k] > cur_max + cash[k]){
cur_up = k;
cur_down = k;
cur_max = cash[k];
}else{
cur_down = k;
cur_max = cur_max + cash[k];
}
if(cur_max > max_array){
max_array = cur_max;
up_local = cur_up;
down_local = cur_down;
}
}
if(max_array > max_maxtrix){
max_maxtrix = max_array;
up = up_local;
down = down_local;
left = i;
right = j;
}
}
}
System.out.println("left:" + left+" right:"+right+" up:"+up +" down" + down);
return max_maxtrix;
}
public static void main(String[] args) {
Solution solution = new Solution();
int[] nums = {4,8,10,240};
int[][] matrix = {{2,1,-3,-4,5},{0,6,3,4,1},{2,-2,-1,4,-5},{-3,3,1,0,3}};
//System.out.println(solution.findMinInsertions("a"));
System.out.println(solution.maxRecInMatrix(matrix));
}