AI偷天换日-视频背景自动转换实践

转载个人知乎账号:https://www.zhihu.com/people/yin-xing-pan/

背景

最近注意到了-密歇根大学博士后的视频背景动态转换研究。

 

就决定自己试试,先上实验后的结果

 

随手在下载一个视频,然后作为转换的demo, 不到10分钟,便产生如上图的视频。真香系列

话不多说,直接进入我们主题,如何进行系统操作,并如何部署成我们自己想要的服务。等我娓娓道来

 

 

实践

找到github项目地址,clone到本地服务,无外乎就是搭建环境,训练模型,跑起服务,然后做个性化定制提供接口等服务。

 

项目地址:

https://github.com/jiupinjia/SkyAR​github.com

 

 

环境搭建

1:#创建虚拟环境 python3 -m venv venv 

2:激活环境  source venv/bin/activate

3: 安装依赖  pip install -r Requirements.txt

 

训练模型

下载官方提供的数据 CVPRW20-SkyOpt dataset

python train.py \
	--dataset cvprw2020-ade20K-defg \
	--checkpoint_dir checkpoints \
	--vis_dir val_out \
	--in_size 384 \
	--max_num_epochs 200 \
	--lr 1e-4 \
	--batch_size 8 \
	--net_G coord_resnet50

 

当然你可以提过此步骤直接使用已经训练好的模型,进行验证实践即可。

https://drive.google.com/uc?id=1COMROzwR4R_7mym6DL9LXhHQlJmJaV0J&export=download​drive.google.com

 

解压后,得到pt模型数据,

 

然后自定义config,找到你要进行转换的视频,放入你的文件目录,找到你想要的背景图片,

{
  "net_G": "coord_resnet50",
  "ckptdir": "./checkpoints_G_coord_resnet50",

  "input_mode": "video",
  "datadir": "./test_videos/canyon.mp4",
  "skybox": "district9ship.jpg",

  "in_size_w": 384,
  "in_size_h": 384,
  "out_size_w": 845,
  "out_size_h": 480,

  "skybox_cernter_crop": 0.5,
  "auto_light_matching": false,
  "relighting_factor": 0.8,
  "recoloring_factor": 0.5,
  "halo_effect": true,

  "output_dir": "./eval_output",
  "save_jpgs": false
}

 

其中datadir 为你原始视频位置,我自己进行了替换。skybox 为背景图片。好戏开始

python skymagic.py --path ./config/cofig-mengmeng.json

 

最终目录下生产了demo.mp4 即为文章初始时候,我的视频。

 

非常有意思,由于项目优先支持GPU,我本人将项目改了代码支持了我mac的cpu进行。

 

如果你感兴趣,还可以将项目提供http服务,app服务等,为大家提供自定义视频服务,真香!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值