定义
二叉搜索树:二叉树中任何节点的键值一定大于其左子树中每一个节点的键值,并且小于其右子树中每一个节点的键值。
查找
基于此,在二叉搜索树中搜索最小元素和最大元素是方便的,从根节点开始,一直往左走,直至无路可走,就得到了最小元素;从跟节点开始,一直往右走,直至无路可走,就得到了最大元素。
查找任何一个节点也是方便的。从跟节点开始,目标值比当前节点的键值大,就继续往右走,目标值比当前节点的键值小,就继续往左走。
插入
首先找到合适的位置。从跟节点开始,如果要插入的值比当前节点的键值大,则往右走;如果要插入的值比当前节点的键值小,就往左移动。直到无路可走就找到了插入节点的合适位置。新建一个节点、赋值、插入。
删除
1、要删除的节点没有子节点。直接删除即可。
2、要删除的节点只有一个孩子节点。删除后直接将孩子节点连接上即可。例如要删除节点15,删除15后,14成为了13的右节点。
3、要删除的节点有两个孩子节点。将又子树的最小值替换要删除的节点。例如要删除节点13,用13的右子树中的最小值14替换掉13,然后删除14节点即可。