cs231n一次课程实践,python实现softmax线性分类器和二层神经网络

看了以后,对bp算法的实现有直观的认识,真的太棒了!
import numpy as np
import matplotlib.pyplot as plt

np.random.seed(0)
N = 100 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D)) # data matrix (each row = single example)
y = np.zeros(N*K, dtype='uint8') # class labels
for j in xrange(K):
  ix = range(N*j,N*(j+1))
  r = np.linspace(0.0,1,N) # radius
  t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
  X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
  y[ix] = j
# lets visualize the data:
#plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
#plt.show()


# initialize parameters randomly
h = 100  # size of hidden layer
W = 0.01 * np.random.randn(D, h)
b = np.zeros((1, h))
W2 = 0.01 * np.random.randn(h, K)
b2 = np.zeros((1, K))

# some hyperparameters
step_size = 1e-0
reg = 1e-3  # regularization strength

# gradient descent loop
num_examples = X.shape[0]
for i in xrange(10000):

    # evaluate class scores, [N x K]
    hidden_layer = np.maximum(0, np.dot(X, W) + b)  # note, ReLU activation
    scores = np.dot(hidden_layer, W2) + b2

    # compute the class probabilities
    exp_scores = np.exp(scores)
    probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)  # [N x K]

    # compute the loss: average cross-entropy loss and regularization
    corect_logprobs = -np.log(probs[range(num_examples), y])
    data_loss = np.sum(corect_logprobs) / num_examples
    reg_loss = 0.5 * reg * np.sum(W * W) + 0.5 * reg * np.sum(W2 * W2)
    loss = data_loss + reg_loss
    if i % 1000 == 0:
        print "iteration %d: loss %f" % (i, loss)

    # compute the gradient on scores
    dscores = probs
    dscores[range(num_examples), y] -= 1
    dscores /= num_examples

    # backpropate the gradient to the parameters
    # first backprop into parameters W2 and b2
    dW2 = np.dot(hidden_layer.T, dscores)
    db2 = np.sum(dscores, axis=0, keepdims=True)
    # next backprop into hidden layer
    dhidden = np.dot(dscores, W2.T)
    # backprop the ReLU non-linearity
    dhidden[hidden_layer <= 0] = 0
    # finally into W,b
    dW = np.dot(X.T, dhidden)
    db = np.sum(dhidden, axis=0, keepdims=True)

    # add regularization gradient contribution
    dW2 += reg * W2
    dW += reg * W

    # perform a parameter update
    W += -step_size * dW
    b += -step_size * db
    W2 += -step_size * dW2
    b2 += -step_size * db2
# evaluate training set accuracy
hidden_layer = np.maximum(0, np.dot(X, W) + b)
scores = np.dot(hidden_layer, W2) + b2
predicted_class = np.argmax(scores, axis=1)
print 'training accuracy: %.2f' % (np.mean(predicted_class == y))


# plot the resulting classifier
h = 0.02
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                     np.arange(y_min, y_max, h))
Z = np.dot(np.maximum(0, np.dot(np.c_[xx.ravel(), yy.ravel()], W) + b), W2) + b2
Z = np.argmax(Z, axis=1)
Z = Z.reshape(xx.shape)
fig = plt.figure()
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.show()
#fig.savefig('spiral_net.png')

线性分类器,loss为softmax loss,注意softmax的梯度形式

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(0)
N = 100 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D)) # data matrix (each row = single example)
y = np.zeros(N*K, dtype='uint8') # class labels
for j in xrange(K):
  ix = range(N*j,N*(j+1))
  r = np.linspace(0.0,1,N) # radius
  t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
  X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
  y[ix] = j
# lets visualize the data:
#plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
#plt.show()

# Train a Linear Classifier

# initialize parameters randomly
W = 0.01 * np.random.randn(D, K)
b = np.zeros((1, K))

# some hyperparameters
step_size = 1e-0
reg = 1e-3  # regularization strength

# gradient descent loop
num_examples = X.shape[0]
for i in xrange(200):

  # evaluate class scores, [N x K]
  scores = np.dot(X, W) + b

  # compute the class probabilities
  exp_scores = np.exp(scores)
  probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)  # [N x K]

  # compute the loss: average cross-entropy loss and regularization
  corect_logprobs = -np.log(probs[range(num_examples), y])
  data_loss = np.sum(corect_logprobs) / num_examples
  reg_loss = 0.5 * reg * np.sum(W * W)
  loss = data_loss + reg_loss
  if i % 10 == 0:
    print "iteration %d: loss %f" % (i, loss)

  # compute the gradient on scores
  dscores = probs
  dscores[range(num_examples), y] -= 1
  dscores /= num_examples

  # backpropate the gradient to the parameters (W,b)
  dW = np.dot(X.T, dscores)
  db = np.sum(dscores, axis=0, keepdims=True)

  dW += reg * W  # regularization gradient

  # perform a parameter update
  W += -step_size * dW
  b += -step_size * db

# evaluate training set accuracy
scores = np.dot(X, W) + b
predicted_class = np.argmax(scores, axis=1)
print 'training accuracy: %.2f' % (np.mean(predicted_class == y))

# plot the resulting classifier
h = 0.02
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                     np.arange(y_min, y_max, h))
Z = np.dot(np.c_[xx.ravel(), yy.ravel()], W) + b
Z = np.argmax(Z, axis=1)
Z = Z.reshape(xx.shape)
#fig = plt.figure()
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
#plt.show()
#fig.savefig('spiral_linear.png')



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值