Softmax分类器
在多分类问题中,我们希望最终的输出是一个分布,满足
P
(
y
=
i
)
≥
0
P(y=i)\geq0
P(y=i)≥0且
∑
i
=
0
n
P
(
y
=
i
)
=
1
\sum_{i=0}^nP(y=i)=1
∑i=0nP(y=i)=1,因此我们采用Softmax而不是之前的Sigmoid
P
(
y
=
i
)
=
e
Z
i
∑
j
=
0
K
−
1
e
Z
j
,
i
∈
{
0
,
…
,
K
−
1
}
P(y=i)=\frac{e^{Z_i}}{\sum_{j=0}^{K-1}e^{Z_j}},i\in\{0,\ldots,K-1\}
P(y=i)=∑j=0K−1eZjeZi,i∈{0,…,K−1}
NLLLoss损失函数
L
o
s
s
(
Y
^
,
Y
)
=
−
Y
log
Y
^
Loss(\hat{Y},Y)=-Y\log\hat{Y}
Loss(Y^,Y)=−YlogY^
需要现在NLLLoss之前把softmax输出的数值求lg值
代码实现
不用pytorch实现
用pytorch实现
注意,y要用torch中的LongTensor类型,这里面[0]对应图中One-hot的1 0 0 即指出第一个数为1
具体代码
这里面Y的2,0,1的意思分别是3次真实结果中分别是第3,1,2个数为1,其余为0
实例代码
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms #将w(宽)×h(高)×c(channel)转换成c×w×h,即把通道提到最前面
batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)) #mnist数据集的均值,前人已经算好的,直接用这两个数就行
])
train_dataset = datasets.MNIST(root='./dataset/minist/',
train=True,
download=True,
transform=transform)
train_loader = DataLoader(train_dataset,
shuffle=True,
batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/',
train=False,
download=True,
transform=transform)
test_loader = DataLoader(test_dataset,
shuffle=False,
batch_size=batch_size)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = torch.nn.Linear(784, 512)
self.l2 = torch.nn.Linear(512, 256)
self.l3 = torch.nn.Linear(256, 128)
self.l4 = torch.nn.Linear(128, 64)
self.l5 = torch.nn.Linear(64, 10)
def forward(self, x):
x = x.view(-1, 784) #-1的意思是让电脑自动计算把这些数分成784列时有多少行
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = F.relu(self.l3(x))
x = F.relu(self.l4(x))
return self.l5(x) #最后一层不需要激活,因为后面用到的损失函数的输入需要的是未激活的值
model = Net()
criterion = torch.nn.CrossEntropyLoss() #交叉熵
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) #momentum:动量,有助于更快收敛,也有助于跳出局部最优
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
optimizer.zero_grad()
#前馈+反馈+更新
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad(): #test不需要算梯度
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1) # 用_表示一个不重要的值,后面也没用到,就只占个位置,dim=1表示横向求max
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %d %%' % (100 * correct/total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
[1, 300] loss: 2.155
[1, 600] loss: 0.788
[1, 900] loss: 0.411
Accuracy on test set: 89 %
[2, 300] loss: 0.310
[2, 600] loss: 0.270
[2, 900] loss: 0.227
Accuracy on test set: 93 %
[3, 300] loss: 0.178
[3, 600] loss: 0.183
[3, 900] loss: 0.150
Accuracy on test set: 95 %
[4, 300] loss: 0.136
[4, 600] loss: 0.120
[4, 900] loss: 0.114
Accuracy on test set: 96 %
[5, 300] loss: 0.102
[5, 600] loss: 0.095
[5, 900] loss: 0.086
Accuracy on test set: 96 %
[6, 300] loss: 0.082
[6, 600] loss: 0.071
[6, 900] loss: 0.072
Accuracy on test set: 97 %
[7, 300] loss: 0.062
[7, 600] loss: 0.060
[7, 900] loss: 0.060
Accuracy on test set: 97 %
[8, 300] loss: 0.051
[8, 600] loss: 0.046
[8, 900] loss: 0.050
Accuracy on test set: 97 %
[9, 300] loss: 0.039
[9, 600] loss: 0.039
[9, 900] loss: 0.044
Accuracy on test set: 97 %
[10, 300] loss: 0.028
[10, 600] loss: 0.032
[10, 900] loss: 0.036
Accuracy on test set: 97 %
课后作业
Try to implement a classifier for:
- Otto Group Product Classification Challenge
- Dataset: Kaggle数据集