Zeking的博客

Zeking的地方

图解算法第二张:选择排序(列表与链表)

文章目录1,内存工作原理计算机的内存犹如一大堆抽屉,每个空间有对应地址2,链表与列表及其优劣2.2,数组元素都在一起,所有元素类型必须相同,而链表是分开的,每个元素都储存了下个元素的地址2.3,数组的读取速度很快O(1),而链表的插入和删除速度很快O(1)3,选择排序O(N^2)复杂度,两次遍历,...

2019-05-23 15:15:57

阅读数 6

评论数 0

图解算法第一章: Big O 表示法

文章目录Big O 表示法 Big O 表示法 衡量一个算法的优劣用时间复杂度和空间复杂度, 时间复杂度不是比较相对的时间长短,而是比较绝对的操作次数。 O(1)为常数复杂度,简单的运算属于这类 O(logn)接近常数,默认都是log2为底,如二分法,128次二分要7次操作 O(...

2019-05-23 14:22:54

阅读数 5

评论数 0

数据结构第一章:向量

文章目录(a)向量vector接口与实现数据类型与数据结构的区别(b)动态管理向量空间1,向量的空间是静态的2,(动态空间管理)当即将发生上溢时,可以模仿蝉褪去原来的壳,扩容实现代码3,选用何种扩容策略实际每次固定尺寸扩容,时间成本大大增加(每隔I都要扩容)每次扩容两倍,指数级扩容,时间大大减少,...

2019-05-15 21:53:14

阅读数 16

评论数 0

Overfeat,RCNN,Sppnet 2014年三篇经典文献及其创新思路总结

文章目录0,让人影响深刻的点(关键点)1,网络结构,实现步骤概览1,RCNN网络结构实现步骤2,Overfeat网络结构3,SPP-Net网络结构2,各网络缺点3,创新思路3.1,整个神经网络训练涉及(可创新的方向):1,图片输入(调整尺寸,归一化,其他预处理等),2,神经网路提取特征图到实现目标...

2019-05-13 22:06:07

阅读数 22

评论数 0

tensorflow滑动平均模型

滑动平均模型tensorflow实现滑动平均模型让最后得到的密性在未知数据上更加健壮1,初始化衰减率ema=tf.train.Exp htonentialMovingAverlage(0.99,step)2新建一个列表【】,执行这个操作,每次都会更新变量 滑动平均模型让最后得到的密性在未知数据上...

2019-04-26 10:22:01

阅读数 25

评论数 0

深度学习python及numpy等第三方包基础

文章目录python deep learning基础一,python 容器类型 1,列表1.1,列表,就是python中的数组,长度可变,且能包含不同类型元素,1.2,切片操作,可用切片方式获取列表中的元素1.3 循环Loops:enumerate 函数访问每个循环元素指针1.4 列表推导List...

2019-04-17 14:48:10

阅读数 154

评论数 0

leetcode算法题:3. Longest Substring Without Repeating Characterse找出最长连续不重复字符串

文章目录关键(找出重复的那个下标for j, c in enumerate(s),s[i:j].index(c)) 关键(找出重复的那个下标for j, c in enumerate(s),s[i:j].index©) for j, c in enumerate(s): if c in s[...

2019-04-15 20:49:51

阅读数 24

评论数 0

tensorflow基础语法入门

文章目录语法入门1,常量定义2,定义运算结构(实际并不运算)3,定义会话Seesion,并执行4,定义变量5,占位变量机制6,矩阵乘7,全局初始化8,feed_dict字典输入补充 语法入门 1,常量定义 a = tf.constant([1, 2], name="a") b ...

2019-04-14 21:54:56

阅读数 45

评论数 0

Tensorflow简介及主要依赖包Protocol Buffer&bazel

第一章简介 1,深度学习的三起三落 起初的感知机,线性叠加(不能解决线性不可分的问题) 之后的bp神经网络,反向传播受制于数据集,电脑硬件限制,被传统的机器学习(人工提取特征)所超越 如今,2012之后深度学习蓬勃发展 2,深度学习在各个领域中的应用, 第二章 主要依赖包及安装 1,Proto...

2019-04-14 21:35:19

阅读数 37

评论数 0

装gpu版tensorflow踩过的坑

文章目录先选用1.10版本,后选用cuda9.0版本,并安装1.10低版本gpu-tensorflow训练模型的时候报错:初始化 Session 的时候为其分配固定数量的显存 装早期的GPU版本1.10失败 先选用1.10版本,后选用cuda9.0版本,并安装1.10低版本gpu-tensorfl...

2019-04-14 11:25:00

阅读数 57

评论数 0

cs231n之KNN-SVM-Softmax-two_layer_net_features总结

文章目录训练分类器流程总结具体分类器代码实现框架 class classifer_name(object):def __init__(self,各类参数):**来初始化W,b**def loss(self,X,y,reg) ----------------return loss,grads1,从(...

2019-04-14 10:25:23

阅读数 57

评论数 0

算法之【字符串】1,找出第一个只出现一次的字符(剑指offer题)

思路分析: 如何找到第一个只出现一次的数: 关键词; 第一个→那就按顺序找 一次,那就计数 想计数, 若调用第三方库可用np.bincount,from collections import Counter等计数 若不调用第三方库,可 ①依次历遍每个字符, ②每历遍一个从字符...

2019-04-03 13:13:47

阅读数 93

评论数 0

python异常处理总结

try except (异常捕获) 当程序出错了,但是我们又不想让用户看到这个错误,而且我在写程序的时候已经预料到了它可以出现这样的错误,出现这样的错误代表着什么,我们可以提前捕获这些个错误 1、异常处理流程图: 2、常见异常 1 2 3 4 ...

2019-04-03 09:16:12

阅读数 36

评论数 0

CS231n物体定位和检测

一般流程参考 方法一:把定位作为回归问题(很实用可以这样考虑) 选择防止回归曾的位置,都可以 法二:滑动窗法,如overfeat网络 加速(高效)窗口法:不把4096看作向量,而是看作feature map特征映射, 那么只剩下卷积和池化操作 ...

2018-10-14 20:28:04

阅读数 202

评论数 0

CS231n神经网络详解(其结构,优化,近年网络实例解析,迁移学习【小dataset】)

神经网络详解 加一圈0,pad保持卷积后尺寸不变 不加一圈0,尺寸会逐步快速减小 总结(卷积层数量计算公式) 1*1的滤波器来卷积也是有意义的(因为有深度),一般用奇数(有左右) 局部连接性(全局连接太大) 每个深度方向(如下5个不同的神经元)都看着输入数据相同的部...

2018-10-14 11:07:13

阅读数 60

评论数 0

cs231n斯坦福基于卷积神经网络的CV学习笔记(二)神经网络训练细节

五,神经网络 实例:逻辑回归二层神经网络训练函数 使用权重w和偏差值biase计算出第一个隐含层h,然后计算损失,评分,进行反向传播回去 多种常用激活函数(一般默认max(0,x)),如sigmoid函数具有饱和区梯度0,非零点中心,计算x复杂等缺点,max(Relu)函数也有缺点(非中...

2018-10-08 11:03:39

阅读数 43

评论数 0

cs231n斯坦福基于卷积神经网络的CV学习笔记(一)KNN和线性分类器/分类器损失/反向传播

绪论:随着计算能力和数据量的提高,出现PASCAL和ImageNet高质量的数据集,使得神经网络成为可能(训练)

2018-10-08 11:02:55

阅读数 73

评论数 0

opencv学习(二十九)特征检测匹配SURF/BruteForceMatcher/Flann快速匹配//寻找已知物体//ORB特征提取

1, 一般Surf匹配思路步骤 2, 基于FLANN的描述符匹配大致就是替代了上步骤中的第三步BruteForceMatcher暴力匹配 3, Sift(尺度不变性)暴力匹配 Surf相比sift速度更快(3倍) 具体程序只是将SiftFeatureDet...

2018-05-14 10:13:08

阅读数 532

评论数 0

opencv学习(二十八)①cornerHarris②8位convertScaleAbs③Shi_Tomas角点检测goodFeaturesToTrack④亚像素级精度角点检测cornerSubPix

1,Harris角点检测cornerHarris 实例1,Harris角点检测cornerHarris //---------------------------------【头文件、命名空间包含部分】---------------------------- // ...

2018-05-10 10:26:34

阅读数 174

评论数 0

opencv学习(二十七)①反向投影calcBackProject()→概率匹配问题②通道复制函数mixchannels()→分离合并颜色通道③模板匹配matchTemplate()→应用小球位置匹配

#一,反向投影calcBackProject() #通道复制函数mixchannels() #实例1,反向投影calcBackProject() 在calcHist()求出直方图后对其求解 //--------------------------------...

2018-05-09 11:51:15

阅读数 323

评论数 2

提示
确定要删除当前文章?
取消 删除
关闭
关闭