Tensorflow介绍
Google的Tensorflow引擎提供了一种解决机器学习问题的高效方法。机器学习在各个行业应用广泛,特别是计算机视觉、语音识别、语言翻译和健康医疗等领域。
创建张量
首先引入tensorflow
import tensorflow as tf
创建指定维度的零张量
print('零张量'.center(50,'-'))
zero_tsr = tf.zeros([3,3])
创建指定维度的单位张量
print('单位张量'.center(50,'-'))
one_tsr = tf.ones([3,3])
创建指定维度的常数填充张量,这里填充数为50
print('指定维度常数张量'.center(50,'-'))
filled_tsr = tf.fill([3,3],50)
创建常数张量
print('已知常数张量'.center(50,'-'))
constant_tsr = tf.constant([1,3,3])
创建序列张量
注意内容为0.0为float格式,若为0则报错
print('序列张量'.center(50,'-'))
linear_tsr = tf.linspace(start=0.0,stop=1.0,num=3)#[0,0.5,1.0]
另外一个例子是tf.range函数,这里给出范围不包含limit
<

本文介绍了Tensorflow的基础知识,包括如何创建不同类型的张量,如零张量、单位张量、常数张量和序列张量。同时,详细讲解了如何生成随机数张量,并探讨了变量的初始化。占位符作为输入输出数据的格式声明,其创建和使用也在文中进行了说明。
最低0.47元/天 解锁文章
964

被折叠的 条评论
为什么被折叠?



