- 博客(64)
- 资源 (41)
- 收藏
- 关注
原创 imutils包
在opencv中调整图像大小使用的是cv2.resize(img,size)的方法,但当我们需要保持宽高比的缩放时,cv2.resize还需要计算缩放后的宽高比,以便保持一致。在opencv中,读入的图像通道顺序为BGR,当我们使用cv2.imshow时,不会有显示问题,但当我们要使用matplotlib时,plt.imshow会假定读入的图像顺序为RGB。在本篇文章中,我们学习了方便简单的imutils包,除了上述功能外,它还有很多使用功能,感兴趣的读者可以去。同样,imutils提供了。
2024-04-26 08:55:11 666
原创 opencv-基本操作
本篇文章,我们利用opencv进行的一些图像基本操作,学会了读取、保存图像,通道的拆分与合并,图像的大小改变与裁剪以及怎么实现图像的边缘填充。本篇文章,我们将聊一聊利用opencv进行的一些基本操作,以便后续我们利用opencv进行更加复杂的处理。有些时候当我们需要对图像的通道进行单独的操作,这个时候就需要进行通道拆分,此时我们用到。有时我们需要对一幅图像的特定区域进行操作。当我们需要把独立的通道合并成一张图像的时候,可以用。当我们需要改变图像大小时,可以使用。1、图像的读取、显示与保存。
2024-04-26 08:54:30 573 2
原创 unetformer实现遥感建筑物提取
此次我们使用的模型为UNetFormer。UNetFormer提出了一种基于transformer的解码器,一种高效的全局-局部注意机制global-local Transformer block (GLTB) ,用于实时城市场景分割。包含了从新西兰基督城的航空图像中提取的超过220,000个独立建筑,图像被分割成了8189个512×512像素的片,其中包含了训练集(130,500个建筑),验证集(14,500个建筑)和测试集(42,000个建筑)。
2024-04-15 08:19:48 1529
原创 基于deeplabv3+|实现遥感建筑物提取
在具体的技术实现上,Deeplabv3+采用了深度可分离卷积,这是一种更快速和更强大的编码器-解码器网络。这种技术可以有效地减少计算量和参数数量,提高模型的效率和性能。它是在Deeplabv3的基础上进行改进和扩展的,通过添加一个简单的解码器模块来特别改善物体边界的分割结果。包含了从新西兰基督城的航空图像中提取的超过220,000个独立建筑,图像被分割成了8189个512×512像素的片,其中包含了训练集(130,500个建筑),验证集(14,500个建筑)和测试集(42,000个建筑)。
2024-03-26 09:55:36 2118
原创 LEDNet实现遥感建筑物提取
该方法同时关注精度和速度,采用不对成的编解码结构。根据卷积操作分解的原则,编码结构的核心,新型残差块包括跳跃结构和通道分离和混洗,前者使残差结构更容易训练,后者增强了特征通道信息交换能力同时保持较小的计算代价。解码结构中为了提取密集特征,LEDNet采用注意力金字塔网络而不是扩张卷积,其中注意力机制用于预测每一个像素点的标签。本次使用的数据集是武大季顺平教授的。
2024-03-26 09:55:03 509
原创 基于topformer实现遥感影像道路提取
Semantics Injection Module:将Semantics Extractors输出的语义信息与对应scale的特征进行融合。Semantics Extractor:输入token金字塔,输出scale-aware的语义信息。Token Pyramid Module:输入待分割的图像,输出token金字塔。分割Head:将融合后的特征作为输入,输出分割结果。本次使用的数据集介绍参考之前的文章。
2024-03-22 15:17:01 509
原创 yolov6实现遥感影像目标识别|以DIOR数据集为例
集成多尺度的特征是检测模型常用且有效的手段,YOLOv6也不例外,在PAN的基础上,把CSPBlock替换为RepBlock(小模型使用)或CSPStackRep Block(大模型使用),并调整宽度和深度,将YOLOv6的颈部命名为Rep-PAN。这20个对象类是飞机、机场、棒球场、篮球场、桥梁、烟囱、水坝、高速公路服务区、高速公路收费站、港口、高尔夫球场、地面田径场、天桥、船舶、体育场、储罐、网球场、火车站、车辆和风磨。在分类性能上,多分支网络相比单分支表现更好,但随并行性降低,其推理速度减慢。
2024-03-22 15:15:39 2133
原创 CGNet实现遥感道路提取
为减少参数量 CGNet 分为 3 个阶段,仅对输入图像分别进行1/2、1/4、1/8的下采样。每个阶段的第一层输入是来自上一个阶段的第一层和最后一层的输出组合,有助于特征重用并加强了特征传播。提取器用提取全局上下文特征,将输入进行全局平均池化(GAP)和多层感知机,将得到的权重和输入按元素相乘。最后是 1x1 卷积,上采样(Upsample),输出分割结果。提取器提取局部特征,使用 3x3 的普通卷积,提取器提取周围上下文特征,使用3x3的扩张卷积;提取器用于提取周围上下文特征,提取器用于提取局部特征,
2024-03-22 15:14:20 827
原创 pyqt5实现语义分割GUI界面工具
进入界面后,会默认选择内置的模型。也可以在右下角的选择模型中选择其他模型。点击右侧按钮可以选取需要测试的图片文件夹(注意是文件夹,不是文件),会默认加载所有符合要求的图片。如果需要保存预测结果,可以在右下方选择保存路径,而后再进行预测,那么图片就会保存到相应的文件夹中。点击预测按钮,即可对当前浏览图片进行预测,预测结果展示在右上方展示框中。点击右下方的上一张或下一张可以切换浏览文件夹内的图片。选取成功后,图片会默认展示,展示文件夹的第一张图片。如果需要获取完整代码,请加入我们的星球。
2024-03-21 09:10:17 1216
原创 断点重训教程:如何有效地保护深度学习模型训练进度
在深度学习领域,长时间训练是常见的需求,然而,在训练过程中可能会面临各种意外情况,比如计算机故障、断电等,这些意外情况可能导致训练过程中断,造成已经投入的时间和资源的浪费。断点重训技术为深度学习模型的训练提供了重要的保障,能够有效地应对训练过程中可能出现的意外情况,保护训练进度不受影响。断点重训是指在深度学习模型训练过程中,当训练被意外中断时,能够通过保存模型参数和优化器状态,并在之后恢复训练的过程。继续训练:基于恢复的训练状态,继续进行后续的训练步骤,从中断处继续进行模型优化。
2024-03-21 09:09:47 1601
原创 基于pyqt5实现yolov6遥感DIOR数据集目标检测工具
点击右侧按钮可以选取需要测试的图片文件夹(注意是文件夹,不是文件),会默认加载所有符合要求的图片。如果需要保存预测结果,可以在右下方选择保存路径,而后再进行预测,那么图片就会保存到相应的文件夹中。下面来看一下目前的一个简单展示。点击预测按钮,即可对当前浏览图片进行预测,预测结果展示在展示框中。进入界面后,会默认选择内置的模型。选取成功后,图片会默认展示,展示文件夹的第一张图片。点击上一张或下一张可以切换浏览文件夹内的图片。如果需要获取完整代码,请加入我们的星球。如有需要,请加入我们的星球!
2024-03-21 09:09:16 372
原创 为什么要设置随机种子
在示例中,我们首先定义里随机种子为7,然后输出了两遍长度为3的随机数组,此时这两个随机数组的值是不一样的,这里很多人会好奇,不是说每次运行的结果都是一样的吗,原因我们在后面详细描述。实际上,在深度学习任务中,很多情况下需要进行随机初始化参数、随机打乱数据集、随机选择样本等操作,这些操作的随机性可能会导致不同的运行结果,而这几行代码的作用是为了确保在进行上述随机性操作时,每次运行得到的结果都是可重复的,我们称之为随机种子。当设置相同的随机种子时,算法生成的随机数序列是相同的。下面是一个随机种子的简单示例。
2024-03-21 09:08:34 996
原创 fc-ef、fc-siam-conc、fc-siam-diff实现遥感建筑物变化检测
此次我们使用的是WHU building dataset,该数据集的前后两个时相影像分别拍摄于2012年与2016年的新西兰,反映的是地震发生后当地的重建情况,更注重不同层次的建筑物变化。FC-EF只包括4个最大池化层和4个上采样层,不同于U-Net中的5个。FC-Siam-conc是通过孪生网络共享参数,分别处理变化前后影像,然后在解码层与生成特征进行拼接。FC-Siam-diff在conc的基础上,对前后影像的特征求差,再与解码层的生成特征进行拼接。完整代码与训练结果请加入我们的星球。
2024-03-20 15:44:35 1062
原创 segformer多分类语义分割
其中Vaihingen是一个相对较小的村庄,有许多独立的建筑和小的多层建筑。全局上下文信息: 由于Transformer的自注意力机制,Segformer可以在整个图像范围内捕获上下文信息,而不受局部感受野的限制,这有助于提高分割的准确性。可扩展性: Transformer架构的并行计算能力使得Segformer在处理大尺度图像时表现更好,因为它可以更轻松地处理长距离的依赖关系。位置编码机制: Segformer使用了一种新的位置编码机制,有助于模型更好地理解像素之间的空间关系,从而提高分割的精度。
2024-03-20 15:43:34 1980
原创 语义分割中那些常见的loss
语义分割是计算机视觉中的一个任务,常用的语义分割损失函数包括:交叉熵损失(Cross Entropy Loss)「交叉熵损失(Cross Entropy Loss)」是在分类任务中常用的一种损失函数,也被称为负对数似然损失(Negative Log-Likelihood Loss)。它主要用于测量模型输出的概率分布与实际标签之间的差异。在语义分割任务中,交叉熵损失通常被应用于像素级别的分类。假设有一个像素属于C类别的图像,其真实标签为one-hot编码的向量[0, 0, ..., 1, ..., 0]
2024-03-20 15:42:58 1456
原创 DFANet实现遥感影像道路提取
它最初由华为(Huawei)提出,并被设计用于处理高分辨率图像的语义分割,例如在自动驾驶领域中使用的卫星图像或城市场景图像。融合不同尺度的信息: 通过使用空洞卷积,DFANet能够在不引入额外参数的情况下增加感受野,有效地融合不同尺度的信息,从而更好地理解图像的语义内容。高效的网络结构: DFANet设计了轻量级的网络结构,以在保持准确性的同时降低计算和内存消耗,适用于一些对计算资源有限的应用场景。感兴趣的可以加入我们的星球,获取更多数据集、网络复现源码与训练结果的。加入前不要忘了领取优惠券哦!
2024-02-02 11:15:23 908
原创 基于arcgis的遥感深度学习数据集制作
然后我们选择update工具,在输入要素中选择我们的背景矢量(fishnet),更新要素中选择我们的目标矢量(lab),输出路径选择我们自己的路径,后缀加上.shp。由于很多时候,我们在研究过程中往往需要根据实际情况使用自己的影像数据来提取目标物,如果没有合适的公开数据集的话,为了满足实际需要,我们就需要制作符合自己要求的数据集。我们点击右上角的选项,选择add field,添加属性。打开属性表我们发现,刚刚勾画的图斑的class_id值为0,为了使勾画的图斑与背景区分,这里我们将其赋值为1,代表建筑。
2024-01-10 21:44:29 4514 2
原创 SENet实现遥感影像场景分类
这 45 个场景类别包括飞机、机场、棒球场、篮球场、海滩、桥梁、丛林、教堂、圆形农田、云、商业区、密集住宅、沙漠、森林、高速公路、高尔夫球场、地面田径、港口、工业地区、交叉口、岛、湖、草地、中型住宅、移动房屋公园、山、立交桥、宫、停车场、铁路、火车站、矩形农田、河、环形交通枢纽、跑道、海、船舶、雪山、稀疏住宅、体育场、储水箱、网球场、露台、火力发电站和湿地。Squeeze(压缩)阶段:通过全局池化操作(通常是全局平均池化),将特征图的每个通道的信息进行汇总,生成通道级别的描述信息。
2024-01-10 21:43:51 1536
原创 satellite-image-deep-learning,一个遥感深度学习方向的宝藏网站
annotation:提供数据集注释信息,里面包含众多标注工具,有的可以自带坐标,有的可以生成geojson。model-training-and-deployment:列出有关深度学习模型的训练和部署的信息。包括正确处理数据,如何部署模型、跟踪模型等。techniques:用于卫星和无人机影像深度学习技术,按方向进行了分类,不同的遥感深度学习方向内,都分享了大量的技术内容。software:分享了如何正确处理遥感影像数据的软件,如何更效率的进行深度学习的软件,以及创建数据集、数据集处理的软件。
2023-12-27 20:49:54 1110
原创 马萨诸塞州道路数据集预处理
而后通过滑窗的方式生产256*256的数据,同时由于部分影像存在空值,会对后续训练产生影响,所以我们对滑窗产生的结果进行一个判断,只有当结果不存在空值(这里值为255,255,255)且含有道路目标时,才保存滑窗的结果。为此,可以使用许多模块和函数,例如,处理来自卫星的原始数据、读取栅格数据、检索地理元数据、转换坐标、裁剪图像、合并多个图像以及以其他格式保存数据。前面我们分享的网络中,都是对256*256的图像进行读取,因此我们需要对原始数据集进行处理,使之满足我们的模型需要。处理完成的结果如下所示。
2023-12-27 20:49:13 1544 3
原创 DeepLabV3+实现sar影像海面溢油区识别
在具体的技术实现上,Deeplabv3+采用了深度可分离卷积,这是一种更快速和更强大的编码器-解码器网络。Deeplabv3+是深度学习领域的一个语义分割模型,由Google的研究人员提出。它是在Deeplabv3的基础上进行改进和扩展的,通过添加一个简单的解码器模块来特别改善物体边界的分割结果。如需要获取完整代码,训练结果等文章内所有内容,可加入我们星球,星球会持续更新相关的数据集与完整代码。本次我们选取的是波斯湾溢油区的数据,并将训练数据按7:3划分为训练集与验证集。加入前不要忘了领取优惠券哦!
2023-12-20 16:21:32 1059 1
原创 MobileNet-V2实现遥感土地利用图像识别
此数据集公共领域图像的像素分辨率为 1 英尺(0.3 米),图像像素大小为 256*256,包含 21 个类别的场景图像共计 2100 张,其中每个类别有 100 张。这 21 个类别分别是:农业、飞机、棒球场、海滩、建筑物、树丛、密集住宅、森林、高速公路、高尔夫球场、港口、路口、中型住宅、移动家庭公园、立交桥、停车场、河、跑道、稀疏住宅、储油罐。划分完毕后,数据集分别保存在train、val、test三个文件夹内。首先我们可以对数据集进行划分,按训练集、验证集、测试集比例7:1.5:1.5进行划分。
2023-12-20 16:20:05 802
原创 unet++实现卫星遥感影像建筑物提取
包含了从新西兰基督城的航空图像中提取的超过220,000个独立建筑,图像被分割成了8189个512×512像素的片,其中包含了训练集(130,500个建筑),验证集(14,500个建筑)和测试集(42,000个建筑)。基于深度学习的遥感建筑物智能提取,首先需要制作数据集,然后构建深度学习神经网络,接着让深度学习神经网络从制作的数据集中学习建筑物的特征,最终实现建筑物的智能提取。本期的分享就到这里,感兴趣的点点关注。如需要获取完整代码,可加入我们星球,星球会持续更新相关的数据集与完整代码。
2023-12-12 22:58:05 1505
原创 BiseNet实现遥感影像地物分类
而上下文路径则具有较大的感受野,可以捕获更多的上下文信息并生成低分辨率的特征图。遥感地物分类通过对遥感图像中的地物进行准确识别和分类,为资源管理、环境保护、城市规划、灾害监测等领域提供重要信息,有助于实现精细化管理和科学决策,提升社会治理和经济发展水平。下面是一些数据集示例。它具有双边分割的特点,可以同时处理空间信息和上下文信息,从而实现高效、准确的图像分割。在BiseNet中,还有一些关键的技术和设计,如轻量级模型设计、注意力机制、特征融合等,这些技术和设计可以进一步提升网络的性能和效率。
2023-12-04 22:23:13 1106
原创 中国湖泊面积-水位长时序数据产品(2000-2020)
中国湖泊面积-水位长时序数据产品(2000-2020)来源于中华人民共和国科学技术部国家遥感中心“全球生态环境遥感监测2021年度报告——全球典型湖泊生态环境状况”;宋春桥,陈探,詹鹏飞,罗双晓.中国科学院南京地理与湖泊研究所.全球典型湖泊面积-水位长时序数据产品(2000-2020).2021年。该数据集包含中国典型湖泊2000-2020年最大水体面积、多年平均面积、水位变化速率及空间分布矢量。今天我们分享中国湖泊面积-水位长时序数据产品(2000-2020)湖泊面积提取->水位。
2023-12-02 23:09:55 743
原创 科研者的福利!一个集论文、代码、数据集为一体的网站
这个网站最好的地方就是对机器学习做了任务分类,检索对应的模型非常方便。您可以通过使用平台上面的代码重现论文的结果,使用模型性能指标检查所有先前的实现,查看研究论文中使用的数据集、模型和方法。它是下一代知识共享平台,由社区驱动,并在CC-BY-SA许可下对维基百科等开放。根据不同分类进去之后,可以看到最终的数据集,以及不同数据集下不同论文的研究结果。除了机器学习之外,该平台还拥有专门的门户网站,用于收录天文学、物理学、计算机科学、数学和统计学领域的代码论文。可以在搜索栏直接输入想要查询的关键词。
2023-12-02 16:29:43 865
原创 pytorch实现遥感建筑物提取
包含了从新西兰基督城的航空图像中提取的超过220,000个独立建筑,图像被分割成了8189个512×512像素的片,其中包含了训练集(130,500个建筑),验证集(14,500个建筑)和测试集(42,000个建筑)。基于深度学习的遥感建筑物智能提取,首先需要制作数据集,然后构建深度学习神经网络,接着让深度学习神经网络从制作的数据集中学习建筑物的特征,最终实现建筑物的智能提取。我们对IOU、F1、OA、Precision、Recall等做了测试,测试精度如下。本期的分享就到这里,感兴趣的点点关注。
2023-11-27 23:08:24 1462 3
原创 中国区域250米归一化植被指数数据集(2000-2022)
文件命名:HXPT_NDVI_MONTH_MAX_250m_YYYYMM_全国_yyyymmddhhmmss.tif,其中HXPT代表国家生态保护红线监管平台生产,NDVI代表归一化植被指数,MONTH代表月度,MAX代表最大值合成,250m代表空间分辨率250米,全国代表覆盖范围全国,YYYYMM代表数据时间年月,yyyymmddhhmmss代表数据生产时间年月日时分秒 数据读取方式:文件采用.tif格式存储,可用ArcGIS等软件打开。资料收集不易,请及时保存,如有侵权请第一时间联系作者。
2023-11-22 22:19:04 425
原创 两个有意思的地图网站
知识图谱致力于将计算机技术引入到古籍领域,以便析取各类古籍中的实体信息,并建立关联,从而形成古籍领域的知识图谱,开发出各类应用工具,为学者和爱好者提供服务。观沧海是一个可以提供地图制作分享服务的公益网站。你可以在网站中查看各类小说中的地图、某一历史朝代的专题图、查看历史事件的走向动图,甚至可以自己动手制作地图。今天给大家介绍两个有意思的地图制作分享软件。知识图谱将不同朝代的历史人物、诗词、名胜以交互地图形式呈现。你可以在网站中查看唐代诗人的人生轨迹。网站还有很多有意思的交互式地图内容。
2023-11-20 20:59:12 76
原创 python将nc文件转成tif
即网络通用数据格式,它是由美国大学大气研究协会的Unidata项目科学家针对科学数据的特点开发的,是一种面向数组型并适于网络共享的数据描述和编码标准,特别适用于包含多维数组和元数据的数据集。NetCDF 文件可以存储各种类型的数据,如气象数据、海洋数据、地理信息系统数据等。在上述示例中,假设你的NetCDF文件包含名为'lat'、'lon'和'PM2.5'的变量,分别表示纬度、经度和PM2.5数据。感兴趣的可以下载数据自己试试。: 与数据集或变量相关联的元数据信息,用于描述数据的含义、单位等。
2023-08-26 22:58:26 1705
原创 分享一个GIS数据下载网站|附数据下载教程
下载FileZilla,安装完成后打开,就可以看到需要我们输入主机、端口、用户名、密码。输入弹窗的内容后,我们就可以连接上数据所在的文件夹。资料收集不易,请及时保存,如有侵权请第一时间联系作者。此时数据就会开始下载到我们的电脑上,会有下载进度条同时右下角会有待下载数据大小。今天我们的分享就这么多,有需要的可以前去看看是否有自己需要的资源。当数据符合我们要求时,点击右上方的下载按钮,出现下面的弹窗。我们可以通过搜索框搜索,也可以通过旁边的关键词进行筛选。选择一个数据,可以看到数据的详细信息。
2023-08-23 22:23:20 2007
原创 arcgis 地形渲染|素材分享
DEM数据是常见的地形数据,在GIS常规的制图中,DEM一直扮演着增强效果。由于带有高程值,DEM在很多情况下都在三维中显示,但这里主要介绍的是在二维ArcMap下如何增强其显示。给安徽省DEM掩膜数据选择合适的色带显示,并将山体阴影分析结果至于上层,并将透明度设置为30%。这里我们使用的是ALOS 12.5m DEM数据,选取的是安徽省的部分。在工具栏选择掩膜提取,输入安徽省DEM数据与安徽省行政边界数据。如下,选择山体阴影,输入上面提取出来的tif数据。全网同号,数据免费获取请关注公众号。
2023-08-22 22:45:15 206
原创 ArcGIS安装包免费分享|附安装教程
是Esri公司开发的一款全面的系统,用户可用其来收集、组织、管理、分析、交流和发布地理信息。作为世界领先的地理信息系统 (GIS) 构建和应用平台,ArcGIS 可供全世界的人们将地理知识应用到政府、企业、学术机构和个人等领域。资料收集不易,请及时保存,如有侵权请第一时间联系作者。如需汉化,则需要打开安装包内的汉化包,右键以管理员身份运行。等安装包,将免费分享给大家,获取方式见文末。粘贴到如下路径中,如果你的路径前面更改了,以你的路径为准。这里默认路径,选择Next。
2023-08-19 19:32:12 1087
原创 2016-2021年全国范围的2.5m分辨率建筑屋顶数据
然而,现有的大规模BRA数据集,如微软、谷歌的数据集,并未涵盖中国,因此缺乏中国全覆盖的BRA地图。此外,为了方便数据的使用,将CBRA分为215个空间网格块,命名为“CBRA_year_E/W**N/S**.tif”,其中“year”为采样年份,“E/W**N/S**”是指图块数据的左上角的纬度和经度坐标。数据格式为栅格格式(.tif),全国被分成215个空间网格,栅格的像元值为0和255,其中0为无建筑区域,255表示建筑物屋顶区域。资料收集不易,请及时保存,如有侵权请第一时间联系作者。
2023-08-19 17:06:04 656
原创 unet建筑物提取
我们可以从它的官网https://project.inria.fr/aerialimagelabeling/下载数据集,数据集包含Training Set、Validation Set、Test Set三个部分,分别包含136,4,10幅1500*1500大小的遥感影像与对应的标签影像。我们利用训练好的模型来测试一下我们的数据,模型最终分割的部分结果如下所示。中间的是我们的结果,右边的是target,可以看到我们的分割结果基本上将建筑物都识别出来了。作者水平有限,如代码存在问题,请及时联系作者。
2023-08-19 17:05:22 1194
原创 TF2-复现VGG网络结构
上期我们分享了LeNet与AlexNet的网络结构,今天我们来利用Tensorflow 2复现VGG16与VGG19的网络结构。VGG网络结构VGG16相比AlexNet的一个改进是采用连续的几个3x3的卷积核代替AlexNet中的较大卷积核(11x11,7x7,5x5)。对于给定的感受野(与输出有关的输入图片的局部大小),采用堆积的小卷积核是优于采用大的卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)。VGG16包含了16个隐藏层(13个卷积层和3个
2022-03-24 20:15:23 3365
原创 TF2-复现LeNet与AlexNet
从这期开始,我们将开始基于Tensorflow 2逐步复现深度学习发展过程中的经典网络。这期我们将复现经典卷积神经网络中的经典——LeNet与AlexNet。CNN卷积的原理与池化的作用这里我们不过多介绍。一个卷积神经网络一般包含输入层、卷积层、输出层,但在真正使用的时候,一般会使用多层卷积去不断的提取特征,特征越抽象,越有利于识别。通常卷积神经网络还包含池化层、全连接层,以及最后的输出层。下面是一个Tensorflow 2实现的简单卷积神经网络。#普通cnn网络class Baseline(Mod
2022-03-22 17:09:09 2826
原创 Tensorflow 2|减少网络学习成本,实现迁移学习
今天我们来实现迁移学习。迁移学习(Transfer learning) 顾名思义就是把已训练好的模型参数迁移到新的模型来帮助新模型训练。考虑到大部分数据或任务都是存在相关性的,所以通过迁移学习我们可以将已经学到的模型参数(也可理解为模型学到的知识)通过某种方式来分享给新模型从而加快并优化模型的学习效率不用像大多数网络那样从零学习。感兴趣的同学可以去了解一下迁移学习的基本概念。下面我们将用Tensorflow 2来完成一次迁移学习。部分内容与上期重复,可选择的跳过。导入必要的库import osim
2022-03-20 20:09:13 1440
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人