1、 三大几何难题
只使用圆规和直尺求出下列问题的解,直到十九世纪被证实这是不可能的:
1.立方倍积 即求作一立方体的边,使该立方体的体积为给定立方体的两倍。
2.化圆为方 即作一正方形,使其与一给定的圆面积相等。
3.三等分角 即分一个给定的任意角为三个相等的部分。
2、 尺规作图只能做有理数加减乘除开平方
一个点或者一个长度能用尺规作图做出来当且仅当这个点的坐标,或者这个长度可以写成有理数有限次加减乘除开平方。我们把这样的数称作“欧几里得数”。
3、 三大几何难题用尺规作图不可解
(超越数)