tensorflow fake quantization 伪量化训练

tensorflow fake quantization 伪量化训练

tensorflow伪量化训练简单说就是用float类型的模拟int类型的运算。在fake quantization训练的过程中,尽量使float类型的计算精度接近int类型的精度。fake quantization 需要在计算图中添加一个伪量化的节点,才能进行伪量化训练,同时该方法的训练出来的模型需要使用,对应的伪量化转pb代码才能生成伪量化后的pb模型,具体如下。

#####################训练阶段-单GPU################################
# 自己定义的计算图,即自己定义的网络模型 
logits, out_data = net.inference(images)
# 添加伪量化
tf.contrib.quantize.create_training_graph(quant_delay=

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览