自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

@bangbang的博客

专注人工智能、图像分类、目标检测

  • 博客(333)
  • 资源 (46)
  • 收藏
  • 关注

原创 Yolov5 QAT量化训练

从模型量化(5): 敏感层分析可以看出来,对于yolov5-nano模型,对最后一层detect层进行敏感层分析的时候,发现对检测精度的影响比较大。所以在PTQ/QAT在进行量化时,会跳过这些敏感层。QAT微调的模型,就是PTQ在校准后的模型。从上一小节可以看出如果PTQ中模型训练和量化是分开的,而QAT则是在模型训练时加入了伪量化节点,用于模拟模型量化时引起的误差。QAT过程中,我们首先需要选择哪些层需要进行finetune训练,并利用FP32对应层的输出作为监督进行训练。

2023-03-21 22:05:58 194

原创 Pytorch模型转Caffe

github上实现的。

2023-03-21 17:37:31 237

原创 模型量化(5): 敏感层分析

在实际PTQ或者QAT过程中,我们不知道哪些层属于敏感层,从而在量化的过程中跳过这些层,所以就需要进行敏感层分析。通过分析每层是否量化对map或者是精度的影响程度,从而确定敏感层。。

2023-03-19 15:18:57 235

原创 基于PTQ的yolov5量化完整代码讲解

(例如MobileNet),同时不同层对于精度的影响也比较大。基础上增加了PTQ量化的代码。的数据分布,找到合适的Scale,从而一定程度上。等量化算子来替换torch.nn对应的算子。(例如ResNet101),但是在。是目前常用的模型量化方法之一。baseline模型。

2023-03-18 22:43:54 37

原创 Pytorch 钩子函数hook的使用

PyTorch会自动舍弃图计算的中间结果,所以想要获取这些数值就需要使用hook函数。(1)因为模块可以是多输入的,所以输入是tuple型的,需要先提取其中的。(remove),以避免每次都运行钩子增加运行负载。的值(不能返回,本地修改也无效),修改时最好用。用来导出指定张量的梯度,或修改这个梯度值。输出是Tensor型的可直接用。(2)导出后不要放到显存上,很。的梯度(即只能返回gin),用来导出指定子模块(可以是。,但只可修改输出,常用来。用来导出指定子模块的。输出张量梯度不可修改。

2023-03-18 15:46:43 382

原创 模型量化(4): Pytorch 量化工具包介绍

在实际开发过程中,单独开发量化的工具进行PTQ或者QAT量化,同时去适配TensorRT, onnxruntime,openvion等推理引擎。Pytorch官方推出了量化工具:Pytorch Quantization库,方便大家使用。是一个工具包,用于训练和评估具有模拟量化的PyTorch模型。支持将 PyTorch 模块自动转换为其量化版本。转换也可以使用 API 手动完成,这允许在不想量化所有模块的情况下进行部分量化。例如,一些层可能对量化比较敏感,对其不进行量化可提高任务精度。

2023-03-18 15:04:17 352

原创 量化(3): 量化校准

为了简单起见,这里只描述了对称范围的校准(工业界一般对称量化即可满足需求),如对称量化所需。(threshold),舍弃那些超出范围的数进行量化,这种量化方式。的方法,它的显著特点是int8的表示空间没有充分利用,因此称为。那么问题来了,对于数据流的饱和量化,怎么在数据流中找到这个。我们都知道量化的过程与数据的分布有关。选择使FP32和int8的激活值分布的。方式虽然充分利用了低比特表示空间,但是。时,高精度向低精度进行映射就会将表示。的选择主要有2种方式,分别是。的表示空间,因此称为。

2023-03-18 13:18:06 377

原创 量化(2):模型常见的量化方式

量化的映射量化的粒度量化的方式量化的对象以及量化的Bit。其中,在量化的映射中,包括线性映射和非线性映射(DSQ),在实际工程项目中主要使用的是线性映射。

2023-03-16 20:25:35 248

原创 量化(1):基础知识

这里数组为[-0.52, 0.3, 1.7],这里我们用映射的方法来进行一个数组的映射,首先,通过求组数组的最大最小值之差然后除以int8的表示范围可以得到Scale=(1.7 -(-0.52))/(127-(-128)) = 0.0087059然后,根据Scale和上式的量化映射方法,可以得到映射后的int8数组为[-60, 34, 195];最后,由于int8的定点表示范围为[-128, 127],因此对于前面得到的结果需要进行Clip。

2023-03-15 22:33:10 209

原创 YOLOv8 网络详解

具体到 YOLOv8 算法,其核心特性和改动提供了一个全新的 SOTA 模型,包括P5 640和P6 1280分辨率 的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了N/S/M/L/X尺度的不同大小模型,用于满足不同场景需求骨干网络和 Neck 部分可能参考了设计思想,将 YOLOv5 的C3结构换成了梯度流更丰富的C2f结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是无脑一套参数应用所有模型,大幅提升了模型性能。

2023-03-15 18:11:40 244

原创 opencv各种库的作用

详情,请参考博文:

2023-03-09 14:18:11 31

原创 ncnn部署(CMakelists.txt)

打开VS2013/VS2019的X64命令行(注意不是cmd),我这里以V32013环境进行编译。注意:cmake -G…这条命令有三个需要换成之前安装protobuf-3.4.0的根目录。表示编译是通过vs2013打开,有如下可以选择的选项。

2023-03-08 10:54:02 309

原创 CMakeList常用命令

https://blog.csdn.net/weixin_44966641/article/details/122355304

2023-03-07 20:23:37 13

原创 目标检测:VOC标注xml数据保存为一个txt文件

代码实现其中保存了voc数据集的20个类别名称运行会在根目录上生成和,用于模型的训练和验证。保存的和的数据格式每一行:2. 自定义Dataset参考B导的github地址:https://github.com/bubbliiiing/detr-pytorch

2023-03-06 13:56:23 24

原创 目标检测: 数据增强代码详解

(水平翻转,缩放,色域变换等)。创建一张像素值为(128,128,128),大小为input_shape 大小比如(640,640)的图片,将4张图片分别放在该图片。然后每张图片分别创建一张和mosaic大小,像素为(128,128,128,128),将图片放在对应的部分。对左上角,左下角,右上角,右下角4个部分box坐标,进行限制,防止坐标超出对应位置以及越界。分别计算每张图片与mosaic后图片,同一点的坐标。等数据增强变换后的图像,逐像素融合为一张图片。,因此需要对标签的坐标信息进行相应的变换。

2023-03-05 19:32:53 404

原创 旋转矩形框标注--roLabelImg的使用

(2) 安装LabelImg: roLabelImg 环境依赖于LabelImg,因此需要先安装好LabelImg。,当angle小于pi/2时,theta等于angle,当angle大于pi/2时,theta等于angle-pi。xml文件保存了旋转检测框的类别(wenben)、中心点坐标(cx,cy)、宽高(w,h)、旋转角(angle)与常规的目标检测bounding box不同,在它的基础上添加了旋转角度,对常规水平检测框进行旋转。预定义的类别名为自定义Dataset的类别名,比如。

2023-03-03 13:52:56 279

原创 目标检测:DETR详解

DETR:, DETR 是 Facebook 团队于2020年提出的基于 Transformer 的端到端目标检测,是Transformer在目标检测的开山之作 –。相比于传统的Faster-rcnn,yolo系列,DETR有以下几个优点:1).无需NMS后处理2).无需设定anchor3).高效并行预测。整个由网络实现端到端的目标检测实现,大大简化了目标检测的 pipeline。

2023-02-26 20:16:05 292

原创 NCNN量化详解2

量化算法介绍的文章的话,下面这篇文章的大佬 @章小龙介绍的比我好多啦。虽然介绍的是NVIDIA TensorRT的算法,但是NCNN是参考其算法做出来的,方法几乎一样变换公式正常的量化,FP32 Value 和 INT8 Value之间的关系是这样的:取值范围由于float32的取值范围几乎是无穷的,而int8只有-128~127。因此建立映射关系时,确定float32的取值范围很重要。

2023-02-25 22:11:58 208

原创 NCNN Conv量化详解1

本文介绍了NCNN代码中目前对于量化的处理。至于如何得到量化模型,请参考NCNN github上的wiki:quantized int8 inference,可以将caffe模型量化成NCNN模型。, 本文仅做学术分享,如有侵权,请联系删文。

2023-02-25 19:16:41 603

原创 NCNN+Int8+yolov5部署和量化

本文提出shufflev2-yolov5的部署和量化教程;剖析了之前yolov5s之所以量化容易崩坏的原因;ncnn的fp16模型对比原生torch模型精度可保持不变;[上图,左为torch原模型,右为fp16模型]ncnn的int8模型精度会略微下降,速度在树莓派上仅能提升5-10%,其他板子暂未测试;

2023-02-25 16:54:55 715

原创 语义分割:标注json文件转mask

该方法,在标注自己的数据集时,labelme版本需安装。

2023-02-22 14:50:16 410

原创 Vision Transformer(ViT) 2: 应用及代码讲解

(1)下载好数据集,代码中默认使用的是花分类数据集,下载地址:, 如果下载不了的话可以通过百度云链接下载:提取码:58p0(2)在train.py脚本中将设置成解压后的文件夹绝对路径(3)下载预训练权重,在文件中每个模型都有提供预训练权重的下载地址,根据自己使用的模型下载对应预训练权重(4)在train.py脚本中将--weights参数设成下载好的预训练权重路径(5)设置好数据集的路径以及预训练权重的路径--weights就能使用train.py脚本开始训练了(训练过程中会自动生成文件)

2023-02-20 13:05:52 399

原创 python简单解析打印onnx模型信息

(TensorProto类型),其中node中存放了模型中所有的计算节点,input存放了模型的输入节点,output存放了模型中所有的输出节点,之后,我们获得的就是一个ModelProto,它包含了一些版本信息,生产者信息和一个GraphProto。这里用python,将onnx中包含的有用的信息打印出来,进行一个直观可视化。里面又包含了四个repeated数组,它们分别是。(ValueInfoProto类型),(ValueInfoProto类型)和。(NodeProto类型),

2023-02-16 17:41:40 473

原创 基于ncnn的yolov5模型部署

这里为什么修改,nihui大佬的解释是u版yolov5是支持动态尺寸推理的,但是ncnn天然支持动态尺寸输入,无需reshape或重新初始化,给多少就算多少。u版yolov5将最后Reshape层把输出的grid写死了,导致检测小图时会出现检测框密密麻麻布满整个画面,或者根本检测不到东西。: 下采样32倍的输出节点name为419,下采样16倍的输出节点name为405,下采样8倍的输出节点name为out,3 ) .打开生成的.param文件,去除不支持的网络层。的编译环境下,配置NCNN。

2023-02-16 00:28:37 191

原创 Mask-RCNN(3) : 自定义数据集读取(VOC &COCO)以及pycocotools的使用

按照3个一组进行划分,前2个值代表关键点的x,y坐标,第3个值代表该关键点的可见度,它只会取。0表示该点一般是在图像外无法标注,1表示虽然该点不可见但大概能猜测出位置(比如人侧着站时虽然有一只耳朵被挡住了,但大概也能猜出位置),2表示该点可见。它的boundingbox信息,可以知道它对应的是分割图片上的红色目标,红色目标它的像素值都是1,刚好。同理第二个目标小飞机,对应分割区域的像素值都是为2的,同理目标3,目标4也是这样。,以上图的标注文件为例,总共标注了4个目标(目标1,目标2,目标3,目标4)。

2023-02-14 15:24:06 449

原创 Mask-RCNN(2) : 代码使用

当一个batch的长宽比率相差比较大的时候,我们真正输入网络的图片其实是很大的。,如果在验证的时候单张输入图片的话,那么我们输入网络的图片大小其实是和当前图片大小是一样的,此时我们对图片不需要太多处理。每隔10个epoch进行验证, 不过这样就没法获得保存每个epoch的验证结果,这样就没法根据每个epoch它的验证结果去绘制对应的曲线了。所以按照长宽比率进行排序之后,我们对它分组,然后再组内进行采样,这样我们输入网络的图片打包成batch它的大小会更小些,从而对。的,在目标检测中是没有使用到的。

2023-02-12 17:00:47 517 1

原创 DeepLabV3使用及源码讲解

博文介绍的DeepLabV3 代码主要来自于pytorch官方torchvision模块中的。

2023-02-06 17:54:49 548

原创 语义分割基础讲解

(比如像素0对应的是(0,0,0)黑色,像素1对应的是(127,0,0)深红色,像素255对应的是(224,224,129))。Labelme是一款非常老的标注工具,使用起来非常简单,就是靠你人工一个个点去标,将我们的目标慢慢的框出来。这个标注工具,基于百度提供的预训练模型,这些模型在一些非常大的数据集上进行训练,它已经包含了我们日常生活中大部分常见的一些目标,使用起来非常简单。针对分割任务的标注工具有很多,网上搜一搜一大把,你一个个去试,总有一款是你喜欢的。语义分割,实例分割,全景分割这三个分割任务的。

2023-02-04 16:53:50 479

原创 图像分割FCN(3):FCN模型搭建和自定义数据集

对应代码,里面有类,Args:Returns:Args:Returns:Args:Returns:其中__init__方法中,定义了图片的路径image_dir以及分割标签mask的路径mask_dir, 并根据txt_path(训练集为train.txt验证集为val.txt)找到所有的训练或验证图片数据以及分割标签。: 根据索引index,利用self.image[index]获取图片的路径,然后将图片转换为RGB。

2023-02-02 09:58:13 313

原创 深度学习知识点总结

HSV(Hue, Saturation, Value)是根据颜色的直观特性由A. R. Smith在1978年创建的一种颜色空间, 也称六角锥体模型(Hexcone Model)(参考百度)。在HSV模型中,颜色是由色度(Hue),饱和度明度(Value)共同组成。色度(Hue)使用角度度量的,范围是从0 ° 到360 ° (逆时针旋转),比如0 ° / 360 ° 代表红色,120 ° 代表原谅色,240 ° 代表蓝色饱和度(Saturation)表示颜色接近光谱色的程度。

2023-01-31 10:15:08 236

原创 图像分割FCN(2):代码的使用讲解

因为如果自己的数据集有问题,一上来训练就会出现各种错误。排错的时候,基本发现都是自己数据的问题。所以建议先用PASCAL VOC训练,训练没问题之后,你再去训练自己的数据集。最终根据设置train是否为True选择对应的Train阶段的预处理还是推理阶段的预处理方法。其中train.txt和val.txt记录的是train和val过程中使用的图片名称。,会从一个非常小的学习率慢慢的增加到我们指定的初始学习率,然后再慢慢地下降。对于验证过程,其实和Train阶段的预处理,其实是差不多的。

2023-01-30 15:14:47 268

原创 深度学习部署:多线程基础学习(1)

这种方法的好处是infer_worker()函数中可以通过this访问变量或者直接访问变量,相对于static函数来说更方便些。只要线程没有启动,一定不能join。当线程t没有启动时, 去执行t.join会异常。若线程启动了,如果join 不加,会在析构时提示异常,出现core dumped。来解决,但这种方式并不是一种较好的选择,因为需要多传入self参数。避免错误执行join操作,程序出现异常。join的作用等待线程执行介绍, 完整的启动线程程序。,说明join确实是起到等待线程结束的作用。

2023-01-03 16:29:41 366 1

原创 BEV视觉3D感知算法梳理

这部分的实现逻辑与传统的Transformer的Decoder的逻辑类似,利用Cross-Attention模块将生成的3D空间下的Object Query和具有3D空间位置的语义特征进行交互,得到Output Embedding,然后利用FFN网络充当3D检测头实现最终的3D检测结果。

2023-01-03 13:40:10 1284

原创 机器视觉2D/3D标注工具汇总

标注工具是处理原始数据的第一关,无论是检测任务、分割任务还是3D感知、点云等,都需要制作真值来监督网络学习。企业级的标注方案一般通过内部的自研工具或专业标注团队完成,而对于个人或小的团队来说,一款开源好用的标注工具则至关重要。

2022-12-30 16:30:43 619 2

原创 传统卷积与Transformers 优缺点对比

近两年Transformer如日中天,刷爆各大CV榜单,但在计算机视觉中,传统卷积就已经彻底输给Transformer了吗?

2022-12-30 15:52:23 1627

原创 Labelme分割标注的使用(非常好)

博客转自于: Labelme分割标注软件使用这里建议大家按照我提供的目录格式事先准备好数据,然后在该根目录下启动labelme(启动目录位子,因为标注json文件中存储的图片路径都是以该目录作为相对路径的)1.1 创建label标签文件虽然在labelme中能够在标注时添加标签,但我个人强烈建议事先创建一个label.txt标签(放在上述位置中),然后启动labelme时直接读取。标签格式如下:每一行代表一个类型的名称,前两行是固定格式__ignore__和_background_都加上,否则后续使用

2022-12-30 14:58:55 771 1

原创 权值衰减weight decay的理解

权值衰减weight decay即L2正则化,目的是通过在Loss函数后加一个正则化项,通过使权重减小的方式,一定减少模型过拟合的问题。L1正则化:即对权重矩阵的每个元素绝对值求和,λ∗∣∣W∣∣λ * ||W||λ∗∣∣W∣∣1/2∗λ∗∣∣W∣∣21/2∗λ∗∣∣W∣∣2注意:正则化项不需要求平均数,因为权重矩阵和样本数量无关,只是为了限制权重规模。L1损失函数。

2022-12-29 14:51:54 1232

原创 model.state_dict(),modules(),children(),named_children(),parameters() 详解

网络 Net 本身是一个nn.Module的子类,包含了backbone和classifierNet(nn.Module子类)backbone和 classifier(Sequential,nn.Module子类),是 Net 的子网络层具体的网络层如 conv,relu,batchnorm 等(nn.Module子类),是 backbone 或 classifier 的子网络层。

2022-12-28 13:36:01 112

原创 目标跟踪MOT15数据集说明

目标检测文件中内容见下图,第一个值表示目标出现在第几帧,第二个值表示目标运动轨迹的ID号,在目标信息文件中都为-1,第三到第六个值为标注bounding box的坐标尺寸值,第七个值为目标检测表示的confidence score,最后三个数字表示行人实际坐标中的3D位置。MOT15数据集的文档组织格式,所有视频被按帧分为图像,图像统一采用jpeg格式,命名方式为6位数字如:000001.jpg,目标和轨迹信息标注文件为CSV格式。在本例中,序列的第一帧中有2个行人,其身份标签为1,2。

2022-12-26 22:47:01 171

原创 卡尔曼滤波在非线性系统中的扩展

卡尔曼滤波器在1960年被卡尔曼发明之后,被广泛应用在动态系统预测。在自动驾驶、机器人、AR领域等应用广泛。卡尔曼滤波器使用类似马尔可夫链的性质,假设系统状态只与上一时刻的系统状态有关。基础的卡尔曼滤波器使用线性方程对系统状态进行建模。为了能够应用到非线性系统,扩展卡尔曼滤波器利用泰勒展开,并只保留一次项,抛弃高次项,将非线性关系近似为线性关系。这一篇文章对扩展卡尔曼滤波器(r)的具体步骤和公式进行讲解。[1]:kalman滤波与目标跟踪1: kalman滤波理论详解。

2022-12-26 15:42:41 351

基于yolov5的PTQ和QAT量化完整代码

1. quant_flow_ptq_int8.py是PTQ int8量化脚本 2. quant_flow_qat_int8.py 是QAT int8量化脚本 3. quant_flow_ptq_sensitive_int8.py 是敏感层分析的脚本

2023-03-18

模型量化校准代码: max,histogram,entropy

模型量化校准代码: max,histogram,entropy

2023-03-18

基于ncnn部署yolov5及量化

文件中包括以下内容: 1. yolov5 转ncnn的权重文件 2. ncnn的依赖库 3. 完整的源代码

2023-02-15

图像分割FCN算法的源码及项目实战

图像分割FCN算法的源码及项目实战 1. 项目博客: https://blog.csdn.net/weixin_38346042/article/details/128719053?spm=1001.2014.3001.5502

2023-02-04

模拟TensorRT int8量化代码

模拟了2个conv的8bit量化工作

2022-11-14

基于coco数据集的yolox模型预训练权重

yolox模型预训练权重

2022-11-07

基于YOLOv7的人体姿态估计讲解及源码

YOLOv7是YOLO家族中第一个包含人体姿态估计模型的。

2022-11-04

YOLOX原理及无人机检测项目实战源码

利用自定义无人机数据集训练YOLOX 数据修改 搭建YOLOX训练环境 使用Conda创建虚拟环境 安装Jupyter和ipykernel 克隆YOLOX GitHub库 安装依赖包 自定义数据集训练 YOLOX推理测试效果 结论

2022-11-04

模型轻量化-YOLOv5无损剪枝

运行顺序: 1. 原始训练,得到一个最优mAP等评价指标 2.通过调整BN稀疏值sr,运行train_sparity.py稀疏训练得到一个稍微小的模型 3. 将训练好的last.pt 放到prune.py 中进行剪枝,控制剪枝率; 4. Finetune得到最优模型

2022-10-28

基于yolov5的目标检测和双目测距源码

包括: 1.yolov5 +sgbm算法集成 2. C++实现sgbm 3.python 实现sgbm 4. jetson tensort 部署 项目参考博客:https://blog.csdn.net/weixin_38346042/article/details/126807379?spm=1001.2014.3001.5501

2022-10-28

pytorch多GPU并行训练教程及源码

多GPU启动指令说明: 1.如果要使用train_multi_gpu_using_launch.py脚本,使用以下指令启动 python -m torch.distributed.launch --nproc_per_node=8 --use_env train_multi_gpu_using_launch.py其中nproc_per_node为并行GPU的数量

2022-10-16

基于yolov5的知识蒸馏实战源码

知识蒸馏是提升网络性能的方法,通过一个教师网络指导学生网络的学习,将教师网络学习到的知识迁移到学生网络上。 项目博客: https://blog.csdn.net/weixin_38346042/article/details/126065848

2022-10-13

基于yolov5的模型剪枝项目实战源码

对yolov5s进行稀疏化训练并剪枝,模型参数下降80%,mAP精度几乎不受影响

2022-10-13

makefile从入门到项目编译实战

参考B站视频: https://www.bilibili.com/video/BV1Xt4y1h7rH/?p=3&spm_id_from=333.880&vd_source=d817bda3198969666552c553deaea683

2022-10-13

利用SGBM算法进行双目测距

利用SGBM算法进行双目测距

2022-09-11

图像分类MobileNet系列源代码:v1-v3

完整的MobileNet v1-v3的源代码,包括模型脚本、训练以及预测脚本。并有完整的博客介绍: 1. MobileNet系列(1) :MobileNet V1网络详解:https://blog.csdn.net/weixin_38346042/article/details/125329726?spm=1001.2014.3001.5501 2. MobileNet系列(2):MobileNet-V2 网络详解:https://blog.csdn.net/weixin_38346042/article/details/125355111?spm=1001.2014.3001.5501 3.MobileNet系列(4):MobileNetv3网络详解:https://blog.csdn.net/weixin_38346042/article/details/125470446?spm=1001.2014.3001.5501

2022-07-05

深度学习图像分类花朵数据集

包括四类花朵:daisy 、dandelion、roses、sunflowers ### 使用步骤如下: * (1)在data_set文件夹下创建新文件夹"flower_data" * (2)点击链接下载花分类数据集 [http://download.tensorflow.org/example_images/flower_photos.tgz](http://download.tensorflow.org/example_images/flower_photos.tgz) * (3)解压数据集到flower_data文件夹下 * (4)执行"split_data.py"脚本自动将数据集划分成训练集train和验证集val ``` ├── flower_data ├── flower_photos(解压的数据集文件夹,3670个样本) ├── train(生成的训练集,3306个样本) └── val(生成的验证集,364个样本) ```

2022-07-05

完整的GAN网络讲解及源码

主要从以下方面介绍GNN及源码 - 如果你的训练数据不充分,没问题。GANs可以根据已知的数据并生成合成图像来扩充您的数据集。 - 可以创建看起来像人脸照片的图像 - 从描述生成图像(从文本到图像合成)。 - 提高视频的分辨率,以捕捉更精细的细节(从低分辨率到高分辨率)。 - 即使在音频领域,GAN也可以用于合成高保真音频或执行语音翻译。 博客地址:https://blog.csdn.net/weixin_38346042/article/details/121633697?spm=1001.2014.3001.5501

2022-06-24

基于UNet的视网膜血管分割源码

unet 医学影像分割源码, 对视网膜血管医学图像分割 代码文件结构: ├── src: 搭建U-Net模型代码 ├── train_utils: 训练、验证以及多GPU训练相关模块 ├── my_dataset.py: 自定义dataset用于读取DRIVE数据集(视网膜血管分割) ├── train.py: 以单GPU为例进行训练 ├── train_multi_GPU.py: 针对使用多GPU的用户使用 ├── predict.py: 简易的预测脚本,使用训练好的权重进行预测测试 └── compute_mean_std.py: 统计数据集各通道的均值和标准差

2022-06-13

unet 医学影像分割源码

unet 医学影像分割源码, 对视网膜血管医学图像分割 代码文件结构: ├── src: 搭建U-Net模型代码 ├── train_utils: 训练、验证以及多GPU训练相关模块 ├── my_dataset.py: 自定义dataset用于读取DRIVE数据集(视网膜血管分割) ├── train.py: 以单GPU为例进行训练 ├── train_multi_GPU.py: 针对使用多GPU的用户使用 ├── predict.py: 简易的预测脚本,使用训练好的权重进行预测测试 └── compute_mean_std.py: 统计数据集各通道的均值和标准差

2022-06-13

自定清理C盘的临时文件

当C盘空间不足时,执行该脚本,可以删除APPDATA下面的系统缓存和浏览器缓存数据,缓解C盘忧虑

2022-06-13

基于Dlib训练一个自定义目标检测器并进行手势操控

使用AI构建基于python的手势控制应用程序。 主要包括以下几部分内容: - 如何用Dlib训练一个自定义手检测器。 - 如何巧妙地自动化标注 - 如何通过手势控制游戏和视频播放器。

2022-06-12

TensorFlow模型优化工具包源码及讲解

TensorFlow Model Optimization Toolkit是一套用于优化ML模型的工具,用于部署和执行。在许多用途中,该工具包支持的技术有如下使用: - 降低云和边缘设备(如移动、物联网)的延迟和t推理成本。 - 将模型部署到对处理、内存、功耗、网络使用和模型存储空间有限制的边缘设备。 - 支持对现有的硬件或加速器运行和优化。 参考博文:https://blog.csdn.net/weixin_38346042/article/details/125232613?spm=1001.2014.3001.5501

2022-06-12

目标检测Faster-RCNN源码

介绍利用Faster-RCNN去训练Pascol VOC数据集或者训练自定义数据集。 参考博客:https://blog.csdn.net/weixin_38346042/article/details/125044860?spm=1001.2014.3001.5502

2022-05-31

基于3D卷积的视频分析与动作识别

3D CNN主要运用在视频分类、动作识别等领域,它是在2D CNN的基础上改变而来。由于2D CNN不能很好的捕获时序上的信息,因此我们采用3D CNN,这样就能将视频中时序信息进行很好的利用。 参考博客:https://blog.csdn.net/weixin_38346042/article/details/124966460?spm=1001.2014.3001.5502

2022-05-25

基于keras的1D CNN时间序列分析

CNN可以很好地识别数据中的简单模式,然后使用这些模式在更高的层中形成更复杂的模式。当您希望从整体数据集的较短(固定长度)片段中获得有趣的特征,且特征在片段中的位置相关性不高时,1D CNN非常有效。 这适用于传感器数据(如陀螺仪或加速度计数据)的时间序列分析。它还适用于分析固定长度周期内的任何类型的信号数据(如音频信号)。另一个应用程序是NLP(尽管在这里LSTM网络更有前途,因为单词的接近程度可能并不总是一个可训练模式的良好指示器) 博客地址:https://blog.csdn.net/weixin_38346042/article/details/121742025?spm=1001.2014.3001.5501

2022-05-23

基于Detectron2和LSTM的人体动作识别

在代码中我们将解释如何使用`姿势估计和LSTM (Long - term Memory)`创建一个用于人类动作识别(或分类)的App。我们将创建一个web应用程序,它接收一个视频,并生成一个带有标识动作类注释的输出视频。

2022-05-21

基于Java的Android OpenCV安装配置及人脸识别源码

1. 完整介绍基于Java的Android OpenCV环境配置 2.实现人脸识别 参考博客:https://blog.csdn.net/weixin_38346042/article/details/124015488?spm=1001.2014.3001.5502

2022-05-21

Opencv停车位识别源码及教程

在这个项目中,我们将创建一个停车位计数器。我们会发现总共有多少辆车,以及有多少停车位是空的。关于本教程最好的一点是,我们将使用基本的图像处理技术来解决这个问题,没有使用机器学习、深度学习进行训练来识别。 参考博客:https://blog.csdn.net/weixin_38346042/article/details/123849063?spm=1001.2014.3001.5501

2022-05-21

微软的猫和狗图像数据集

微软的猫和狗图像数据集,用于深度学习图像分类训练

2022-05-19

使用Tensorflow Lite Model Maker 创建边缘端机器学习模型

介绍如何使用`TF Lite model maker`库创建TensorFlow Lite模型。我们将在自定义数据集上微调一个预训练的图像分类模型,并进一步探索Tensorflow Lite支持的不同类型的模型优化技术,并将其导出到TF Lite模型。将创建的TF Lite模型与通过Tensorflow Lite 转换的模型进行详细的性能比较,最后将模型部署到web应用中。 博客地址:https://blog.csdn.net/weixin_38346042/article/details/124823920?spm=1001.2014.3001.5501

2022-05-19

国内车牌识别数据集及源码

项目:采用tensorflow中的keras库 + 训练时数据生成器data_generator; 实现端到端车牌识别项目,具备完整的数据集、数据制作、训练、评估、预测业务。

2022-05-16

双目相机标定源代码及工具

标定的目的是为了消除畸变以及得到内外参数矩阵,内参数矩阵与焦距相关,而外参数矩阵反映的是摄像机坐标系与世界坐标系的转换. 参见博客:https://blog.csdn.net/weixin_38346042/article/details/124739933?spm=1001.2014.3001.5501

2022-05-12

Pytorch使用预训练模型进行图像分类

我们介绍一些使用预训练网络的实际例子,这些网络出现在TorchVision模块的图像分类中。 包括流行的数据集,模型体系结构,和通用的图像转换为计算机视觉。基本上,如果你进入计算机视觉并使用PyTorch, Torchvision将会有很大的帮助!

2022-05-07

使用Mediapipe制作抖音特效

抖音提供的特性可以让你在几秒钟内随心所欲地变换 只要在你的脸上添加一个特效就变成一个可爱的头像,或者你最喜欢的虚构人物。这样的特性有数百种,都是由增强现实(AR)驱动的。 我们将利用`Mediapipe`框架创建我们自己的特效!

2022-05-06

TensorFlow Lite:针对边缘端模型优化

TensorFlow Lite:针对边缘端模型优化项目,将学习各种支持的模型优化,包括INT8,FP16量化以及混合精度量化,并分析优化后的模型在边缘设备上的性能

2022-05-05

经典图像分类-目标检测-图像分割PPT合集

图像分类: AlexNet VGG GoogleNet ResNet ResNext MobileNet_v1_v2 MobileNet_v3 ShuffleNet_v1_v2 EfficientNet_v1 EfficientNet_v2 Transformer 目标检测: R-CNN Fast R-CNN Faster R-CNN FPN SSD RetinaNet YOLOv1 YOLOv2 YOLOv3 YOLOv3SPP

2022-04-30

人脸识别算法设计方案文档

人脸识别算法完整的设计方案及原理说明,可以应用于实际项目落地

2022-04-21

Opencv项目中人脸识别模型文件

Opencv项目中人脸识别模型文件

2022-04-10

c++核心编程代码及资料

c++核心编程代码及资料

2022-03-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除