《算法导论》学习笔记(5)——动态规划:最长子序列

        动态规划,是一种通过组合子问题的解来求解原问题的方法,应用于子问题重叠的情况,即不同的子问题具有公共的子子问题。对于这种问题,很容易想到用分治的方法,但是分治的缺点,是会做许多不必要的工作,而且会反复求解那些公共子子问题。而动态规划对每个子问题只求解一次,将其解保存在一个表格中,从而无需每次求解一个子子问题都重新计算,避免了这种不必要的计算工作。

       动态规划算法的设计通常为以下四个步骤:

       ①刻画一个最优解的结构特征

       ②递归地定义最优解的值

       ③计算最优解的值,通常采用自底向上的方法

       ④利用计算出的信息构造一个最优解

 

       下面,将根据《算法导论》的15.4节:最长公共子序列,来具体分析动态规划算法。

 

       两个序列的公共子序列指的是两个序列中相同的子序列。需要强调的是,子序列并不需要字符在字符串中是连续的。比如字符串abcdefg的一个子序列可以是ace,也可以是ceg,只要子序列中的每个字符在字符串中的位置是严格递增的即可。而最长公共子序列( longest-common-subsequenceproblem, LCS )就是求出最长的公共子序列。

 

       通过以上的定义我们可以知道最长公共子序列有如下性质:

设序列X=<x1, x2, …, xm>和Y=<y1, y2, …, yn>的一个最长公共子序列Z=<z1, z2, …, zk>,则:

若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;

若xm≠yn且zk≠xm 则Z是Xm-1和Y的最长公共子序列;

若xm≠yn且zk≠yn,则Z是X和Yn-1的最长公共子序列。

    其中Xm-1=<x1,x2, …, xm-1>,Yn-1=<y1,y2, …, yn-1>,Zk-1=<z1,z2, …, zk-1>。

 

这些性质是很显然的,但是利用这些性质可以给我们带来一个很方便处理方法:我们求解当前X和Y的LCS,可以先求他们两个的子序列X'和Y',我们可以记录下他们子序列的LCS,然后再进一步判断是否要在当前序列的LCS上添加字符。而对于他们的子序列,有可以看成是当前序列,进而就他们的子序列X''和Y'',

       于是这样就形成了递归,并且每个子问题都有重叠性质,也就是说,在计算X和Y的最长公共子序列时,可能要计算出X和Yn-1及Xm-1和Y的最长公共子序列。而这两个子问题都包含一个公共子问题,即计算Xm-1和Yn-1的最长公共子序列。

因此,我们就可以根据这个性质来递归地求最优解的值,假设c[i,j]记录序列i和Yj的最长公共子序列的长度。其中Xi=<x1, x2,…, xi>,Yj=<y1, y2,…, yj>。当i=0或j=0时,空序列是Xi和Yj的最长公共子序列,故c[i,j]=0。其他情况下,由定理可建立递归关系如下:


计算LCS的长度 LCSlength()

       该步骤需要维护两个表格(二维数组),用c[i,j]表示Xi和Yi的LCS的长度,用b[i,j]指向的表项对应计算c[i,j]时所选择的子问题最优解。

       例如X = <A,B,C,B,D,A,B>, Y = <B,D,C,A,B,A>,两张表如下:

c[2,4]表示当前的序列X' = <A,B>, Y' = <B,D,C,A>,他们的子序列的长度为1:B。

    c[4,5]表示当前的序列X' = <A,B,C,B>, Y' = <B,D,C,A,B>, 他们的子序列的长度为3:BCB。

   

构造LCS printLCS()

   根据上表,从右下角往左上角移动,只有方向为“↖”,才表示两个字符相等,就将该字符添加到当前两个字符串的子序列中。

 

实现代码如下:

#include <iostream>
using namespace std;

enum direction { UP, RIGHT, UPPERRIGHT }; //方向:上、右、右上(相等)

struct point //表格中的每一个格
{
	direction dir; //存放当前LCS的长度
	int len; //计算对应的最优解的构造过程
};

class Table
{
public:
	Table( string a, string b ); //带参数的构造函数
	~Table(); //析构函数
	void getLCS(); //返回最长子序列

private:
	string a;
	string b;
	int lengthA;
	int lengthB;
	point** p; //二维数组p,两个维度分别为字符串a和b,每个元素记录长度dir和方向len
	void LCSlength(); //构造二维数组
	void printLCS( int i, int j ); //对已经构造好的二维数组中返回最长子序列

};

Table::Table( string a, string b )
{
	this->a = a;
	this->b = b;
	lengthA = a.length();
	lengthB = b.length();
	p = new point* [lengthA+1]; //动态声明一个二维数组,每个维度长度比字符串的长度多1
	for( int i=0; i<=lengthA; i++ )
		p[i] = new point [lengthB+1];
	for( int i=1; i<lengthA+1; i++ ) //0行、0列初始化为0,
		p[i][0].len = 0;
	for( int j=0; j<lengthB+1; j++ )
		p[0][j].len = 0;
}

Table::~Table()
{
	for( int i=0; i<=lengthA; i++ )
		delete[] p[i];
	delete[] p;
}

void Table::getLCS() //先构造,再打印
{
	LCSlength();
	printLCS( lengthA, lengthB );
}

void Table::LCSlength()
{
	/*				0,					         若i=0或j=0
	 * p[i,j].len = c[i-1,j-1]+1                                 若i,j>0且x[i]==y[i]
	 * 				max(c[i,j-1],c[i-1,j]) 若i,j>0且x[i]!=y[i]
	 */
	for( int i=1; i<=lengthA; i++ )
		for( int j=1; j<=lengthB; j++ )
		{
			if( a[i-1] == b[j-1] )
			{
				p[i][j].len = p[i-1][j-1].len + 1;
				p[i][j].dir = UPPERRIGHT;
			}
			else if( p[i-1][j].len >= p[i][j-1].len )
			{
				p[i][j].len = p[i-1][j].len;
				p[i][j].dir = UP;
			}
			else
			{
				p[i][j].len = p[i][j-1].len;
				p[i][j].dir = RIGHT;
			}
		}
}

void Table::printLCS( int i, int j )
{
	if( i==0 || j==0 )
		return;
	if( p[i][j].dir == UPPERRIGHT )
	{
		printLCS( i-1, j-1 );
		cout << a[i-1] << " ";
	}
	else if( p[i][j].dir == UP )
		printLCS( i-1, j );
	else
		printLCS( i, j-1 );
}

int main() {
	string a, b;
	cin >> a >> b;
	Table table( a, b );
	table.getLCS();
	return 0;
}




  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值