题目来源:https://leetcode.cn/problems/climbing-stairs/description/
C++题解1(来源代码随想录): 本质上是一道斐波那契数题。
动规五部曲:定义一个一维数组来记录不同楼层的状态
- 确定dp数组以及下标的含义。dp[i]: 爬到第i层楼梯,有dp[i]种方法
- 确定递推公式。如何可以推出dp[i]呢?首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么;还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么;那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!所以dp[i] = dp[i - 1] + dp[i - 2] 。
- dp数组如何初始化。dp[1] = 1,dp[2] = 2
- 确定遍历顺序。从递推公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,遍历顺序一定是从前向后遍历的
- 举例推导dp数组。
class Solution {
public:
int climbStairs(int n) {
if (n <= 1) return n; // 因为下面直接对dp[2]操作了,防止空指针
vector<int> dp(n + 1);
dp[1] = 1;
dp[2] = 2;
for (int i = 3; i <= n; i++) { // 注意i是从3开始的
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
};
class Solution {
public:
int climbStairs(int n) {
if(n <= 2) return n;
vector<int> dp(2);
dp[0] = 1; dp[1] = 2;
int sum = 0;
for(int i = 2; i < n; i++) {
sum = dp[0] + dp[1];
dp[0] = dp[1];
dp[1] = sum;
}
return sum;
}
};
C++题解2(来源代码随想录):将该题转换为一个完全背包问题。
一步一个台阶,两个台阶,三个台阶,.......,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢?1阶,2阶,.... m阶就是物品,楼顶就是背包。每一阶可以重复使用,例如跳了1阶,还可以继续跳1阶。问跳到楼顶有几种方法其实就是问装满背包有几种方法。此时大家应该发现这就是一个完全背包问题了!
动规五部曲分析如下:
- 确定dp数组以及下标的含义。dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。
- 确定递推公式。求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]]; 本题呢,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]。那么递推公式为:dp[i] += dp[i - j]
- dp数组如何初始化。既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。
- 确定遍历顺序。这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!所以需将target放在外循环,将nums放在内循环。每一步可以走多次,这是完全背包,内循环需要从前向后遍历。
- 举例来推导dp数组
// 将m改为2可以AC此题
class Solution {
public:
int climbStairs(int n) {
vector<int> dp(n + 1, 0);
dp[0] = 1;
for (int i = 1; i <= n; i++) { // 遍历背包
for (int j = 1; j <= m; j++) { // 遍历物品
if (i - j >= 0) dp[i] += dp[i - j];
}
}
return dp[n];
}
};