给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。
示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。
示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。
说明: 你可以假设 n 不小于 2 且不大于 58。
class Solution {
public:
vector<int> memo;
int breakInter(int n)
{
if(n==1)
return 1;
int res =-1;
if(memo[n]!=-1)
return memo[n];
for(int i=1;i<=n-1;i++)
res = max(res,max(i*breakInter(n-i),i*(n-i)));
memo[n]=res;
return memo[n];
}
int integerBreak(int n) {
memo=vector<int>(n+1,-1);
return breakInter(n);
}
};
//动态规划问题
class Solution {
public:
vector<int> memo;
int integerBreak(int n) {
memo=vector<int>(n+1,-1);
memo[1]=1;
for(int i=2;i<=n;i++)
{
for(int j=1;j<=i-1;j++)
{
memo[i]=max(memo[i],max(j*(i-j),j*memo[i-j]));
}
}
return memo[n];
}
};