动态规划问题之 钢条切割

动态规划与分治算法异同:

分治算法将问题划分为互不相交的子问题,递归的求解子问题。分治算法会做出许多不必要的工作,会反复求解那些公共子问题。而动态规划对子问题只求解一次,将其存储在一个表格里面,无需每次都重新计算。

动态规划通常用来求解最优化问题,这个问题可能有许多可行解,每个解都有一个值,我们希望寻找具有最优值的解。我们称这样的解为问题的一个最优解,而不是最优解,因为可能有多个解达到最优值。

这里写图片描述

这里写图片描述

这里写图片描述

(1)根据书中思路,我们可以设计一套递归算法来求解,但此种解法效率会很低,原因是函数会反复递归调用自己,T(N)=2^N;

价格表在上图中:

这里写图片描述

#include<iostream>
using namespace std;

int CUT_ROD(int n[], int); //定义递归函数参数是价格数组和钢管长度
int main() 
{
    int p[11];
    cout << 
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
动态规划是解决钢条切割问题的有效方法。下面是解决该问题的步骤: 1.定义问题:假设我们有一段长度为n的钢条和一个价格表pi(i=1,2,3….),其中pi表示长度为i英寸的钢条的价格。我们需要找到一种切割方案,使得切割后的钢条总价格最大。 2.找到最优子结构:假设我们已经找到了长度为n的钢条的最优切割方案,即rn。那么rn必然由一个或多个长度小于n的钢条的最优切割方案组成。因此,问题的最优解包含了子问题的最优解,具有最优子结构性质。 3.确定状态:我们可以用r[n]表示长度为n的钢条的最大收益。因此,我们需要求解的就是r[n]。 4.确定状态转移方程:假设我们已经知道了r, r, ..., r[n-1]的值,我们需要求解r[n]。我们可以枚举钢条的第一段切割位置,假设第一段切割位置为i,则有以下状态转移方程: r[n] = max(p[i] + r[n-i]),其中1<=i<=n 5.确定边界条件:当钢条长度为0时,收益为0,即r=0。 6.计算最优解:根据状态转移方程和边界条件,我们可以使用自底向上的方法计算出r[n]的值,从而得到最优解。 下面是Python代码实现: ```python def cut_rod(p, n): r = [0] * (n + 1) for j in range(1, n + 1): q = -1 for i in range(1, j + 1): q = max(q, p[i] + r[j - i]) r[j] = q return r[n] # 示例 p = [0, 1, 5, 8, 9, 10, 17, 17, 20, 24, 30] n = 4 print("长度为{}的钢条的最大收益为{}".format(n, cut_rod(p, n))) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值