初探tensorflow

根据google官方的教程得出的结果,傻瓜式,教程英文地址:https://www.tensorflow.org/versions/r0.10/tutorials/mnist/pros/index.html#deep-mnist-for-experts

需要注意的时,极客学院给出的中文翻译下边的链接还在使用googlesource的链接所以代码链接基本失效,但是官方并没有给出更新,希望官方可以将自己的网页和离线版更新,个人认为这个体现敬业的精神

给出极客学院的中文教程地址:http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_pros.html

谷歌出的这一款深度学习框架基于linux系统,折腾半天把自己的e420终于装上了ubuntu虽然系统到现在还是存在风扇转速不能控制的缺点但是好用还是实打实的,再次感叹一句,windows简直是最傻X的系统,没办法,人家有市场垄断地位,废话不说,进入正题。
tensorflow内置很多专为深度学习设计的概念,图的概念,会话的概念,tensor的概念等等

先学习的是最简单的入门教程,使用softmax训练一个mnist手写输入识别的模型,这个模型google给出的官方教程称之为入门经典,这个图片训练的过程不用将图片的信息压缩,因为使用的时28×28像素的小图片,所以输入图片的数据维度为784维,根据google官方的教程,所需要的mnist源码都在.\tensorflow\example\tutorials\mnist

在ubuntu系统下安装Komodo edit 打开源码所在文件夹,可以看到各个文件:
mnist各文件
在《深入mnist》(Deep MNIST for Experts)这一节,google说给出了一个小的scripty下载mnist的数据集(看到这一点顿时自己sb了,怎么都不知道这些呢)

input_data.py 文件即为那个小的插件,这个还没搞懂,暂且不说
这个文件夹中的mnist_softmax.py文件为一个对模型进行计算的test文件,有的同学自己写的,我也没试过,还没做深入的研究,得出来的数据:92.15(如图)
默认参数下softmax的准确率

先到这里,剩下每个文件的用法,稍后再试一下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值