下载TensorFlow images
使用hub.docker.com的镜像
- docker pull tensorflow/tensorflow:latest
使用daocloud 的镜像,在国内用速度还是挺快的,如果docker.io的镜像慢,可以用daocloud的。
- docker pull daocloud.io/daocloud/tensorflow:latest
启动镜像
启动命令,设置端口,同时配置volume 数据卷,用于永久保存数据。加上 –rm 在停止的时候删除镜像。
- sudo mkdir -p /data/tensorflow/notebooks
- docker run -it --rm --name myts -v /data/tensorflow/notebooks:/notebooks -p 8888:8888 daocloud.io/daocloud/tensorflow:latest
启动的时候并不是daemon 模式的,而是前台模式,同时显示了运行的日志。
打开浏览器就可以直接看到界面了。
同时可以编辑内容:
写第一个 hello world:
import tensorflow as tf a = tf.constant(10) b = tf.constant(32) with tf.Session(): c = tf.add(a,b) print(c) print(c.eval())
其他的使用参考中文手册:
https://github.com/jikexueyuanwiki/tensorflow-zh
里面有pdf 可以下载使用。
还有一个超级炫酷的playground :
http://playground.tensorflow.org/
5,打个补丁
vi run_jupyter.sh
jupyter notebook --no-browser --NotebookApp.token='token1234' > /notebooks/jupyter-notebook.log
然后重新打一个docker镜像。
vi Dockerfile
FROM daocloud.io/daocloud/tensorflow:latest
RUN rm -f /run_jupyter.sh
COPY run_jupyter.sh /run_jupyter.sh
ENTRYPOINT ["/run_jupyter.sh"]
这样就固定token了。
docker build -t mytf:1.0 docker run -it --rm --name myts -v /data/tensorflow/notebooks:/notebooks -p 8888:8888 -d mytf:1.0
然后就可以 -d 参数,将docker 运行放到后台。然后就可以使用 docker exec -it xxx bash 登录进去查看系统的状况了。