miao0967020148的专栏

私信 关注
醉雨轩 ^_^
码龄10年
  • 1,318,221
    被访问量
  • 200
    原创文章
  • 5,694
    作者排名
  • 181
    粉丝数量
  • 于 2011-05-17 加入CSDN
获得成就
  • 获得337次点赞
  • 内容获得180次评论
  • 获得804次收藏
荣誉勋章
兴趣领域
  • #Android
    #Android Studio#Java
TA的专栏
  • 应用程序
    3篇
  • 英文写作
    2篇
  • 波束形成
    4篇
  • keras
    5篇
  • 树莓派
    7篇
  • 烟火日子
    3篇
  • Java
    5篇
  • C++
    5篇
  • C#
    9篇
  • Flex
  • PHP
    20篇
  • 算法
    10篇
  • 数学
    8篇
  • PS
    8篇
  • Ext
    1篇
  • Linux
    29篇
  • Android
    24篇
  • MATLAB
    15篇
  • Python
    63篇
  • 理论
    32篇
  • 数据库
    5篇
  • 信号
    13篇
  • 信号处理
    21篇
  • 机器学习
    11篇
  • Tensorflow
    27篇
  • word
    5篇
  • NS2
    1篇
  • R
    1篇
  • Hadoop
    1篇
  • 水声
    2篇
  • 时频分析
    2篇
  • latex模板
    15篇
  • Android Wear
    1篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

厦门大学LaTeX模板:公式跨行和编号

1、修改XMU-thesis-grd.cls文件找到\RequirePackage{amsmath}在行后添加一句\allowdisplaybreaks[4]2、正文正文选用\begin{align}...\end{align}例子\begin{align}a&=(b+c+d)*s
otag \\&=bs+cs+ds \\&=(b+c)s+ds
otag\end{align}或者无编号\begin{align*} a&=
原创
18阅读
0评论
0点赞
发布博客于 昨天

Microsoft SQL Server 2019安装和设置用户密码

1、免费下载两个安装包SQL2019-SSEI-Dev地址:https://www.microsoft.com/en-us/sql-server/sql-server-downloadsSSMS-Setup-CHShttps://aka.ms/ssmsfullsetup下载开发版本2、安装SQL2019-SSEI-Dev.exe建议选择基本类型安装,3、SSMS-Setup-CHS.exe4、以Windows身份验证登录5、设置sa用户名和密码
原创
95阅读
0评论
0点赞
发布博客于 15 天前

magnifyOnFigure.rar

一个工具箱,能实现MATLAB图中图,放大MATLAB原始图中的局部图
rar
发布资源于 22 天前

MATLAB 图中放大图

magnifyOnFigure是一个工具箱,下载链接为:https://download.csdn.net/download/miao0967020148/15154799?spm=1001.2014.3001.5501clc;clear allclose alldisp( sprintf('The figure handle is here passed as an input argument.') ) fig = figure;hold on;plot(rand(100,1), .
原创
9阅读
0评论
0点赞
发布博客于 22 天前

Office word 为插入对象Aurora Equation设置快捷键

一般word插入漂亮的LaTeX公式工具Aurora Equation,需要繁琐的三步骤:为了避免重复繁琐的三步骤,可以为Aurora Equation设置快捷键。 录制宏 点击确定后,开始录制宏:点击插入——>对象——>Aurora Equations三步骤返回开发工具界面,停止录制。为录制的宏指定快捷键...
原创
32阅读
0评论
0点赞
发布博客于 29 天前

LaTeX插入Visio绘图,文字模糊

插入图方式:Visio绘制图——>PDF——>PDF页面裁剪——>另存为PDF或EPS,出现字体模糊原因:由于图框本身的阴影效果、截图、GIMP图像转换过程中造成的图片质量下降,使得最终放到文章的图片出现模糊或有阴影的缺陷。解决方法:方法一:直接把Visio的图存为png或jpg的图,此方法缺点文章现实分辨率不高;方法二:Visio——>另存为svg矢量图——>Office converter转换器——>eps格式文件...
原创
26阅读
0评论
0点赞
发布博客于 29 天前

excel加密文档破解

如果Excel文档后缀为.xlsx,可以先将文档另存为后缀为 .xls 的文件用 Excel 打开工作簿,然后按 Alt + F11 进入 “开发工具” 界面,如下图:在左边的工程栏(Project)中选定节点 “ThisWorkbook”,双击左键,然后把下面的代码复制到右边的代码编辑框中Public Sub 工作表保护密码破解() Const DBLSPACE As String = vbNewLine & vbNewLine Const AUTHORS A..
原创
56阅读
0评论
0点赞
发布博客于 2 月前

深度神经网络:笔记(二)

1 卷积神经网络CNN比多层感知器(MLP)表现更好,原因为:MLP将输入矩阵转换为一个没有空间结构的数字向量。MLP不知道数字空间排列。与MLP不同,CNN距离较近的像素之间比距离较远的像素之间的相关性更大。CNN=输入层+隐含层+全连接层CNN与MLP不同处是模型中的隐含层类型。一个ConvNet按三个维度排列神经元:宽度、高度和深度。每一层都通过激活函数将三维输入量转换为三维输出量。MLP存在两个问题增加了参数数量 只接收向量作为输入,需要将矩阵降维成一个向量CNN可以接收矩阵
原创
33阅读
1评论
0点赞
发布博客于 2 月前

深度神经网络:笔记(一)

1 创建神经网络块卷积神经网络设计目的是以最小的数据处理代价直接从图像中识别出视觉模式。前馈网络每个神经元接收来自其他神经元的输入。每个输入项对神经元的影响由权重控制,权重可以是正的也可以是负的。整个神经网络通过理解这种范式进而执行有效的计算来识别对象。将这些神经元连接成一个网络,称之为前馈网络。2 Tensorflow计算图,并行完成所有计算,效率高如:TensorFlow的数据存储是用一个称之为张量的数据结构。一种由原始值组成的任意维的数组。张量的维数称为阶.
原创
65阅读
0评论
0点赞
发布博客于 2 月前

如何看Thinkpad笔记本参数

选择Thinkpad的笔记本电脑,硬件配置参数分析和参考一、处理器处理器基准频率点击Windows 图标 > 设置 > 系统 > 关于,在系统信息中查看处理器,存在两个不同频率值2.5GHz与2.71GHz,如下图:这两个数值都是CPU规格定义基频。前一个数值(例如:12.5GHz)为CPU硬件基频,后一个数值(例如:2.71GHz)为当前CPU运行基准频率。理论上,主频越高,CPU的运算速度就越快。但主频不等于处理器一秒钟执行的指令条数,因为一条指令的执行可能..
原创
69阅读
0评论
0点赞
发布博客于 2 月前

厦门大学LaTeX模板:添加伪代码

在XMU-thesis-grd.cls文件中添加:%% algorithm package\RequirePackage{algorithm,algorithmicx,algpseudocode}\floatname{algorithm}{算法}\renewcommand{\algorithmicrequire}{\textbf{输入:}}\renewcommand{\algorithmicensure}{\textbf{输出:}}\renewcommand\thealgorithm{\a
原创
70阅读
0评论
1点赞
发布博客于 2 月前

复向量的内积与共轭

一个信号离散序列为,函数为之间的内积为:公式1:其中,表示复共轭,这种内积公式转换称之为典范内积公式2:举个例子说明:,所以,上述展开的典范内积计算结果是共轭的。公式1和公式2的定义携带了相同的矢量内积信息,在矢量内积的意义上2个定义公式是等价的,...
原创
599阅读
0评论
0点赞
发布博客于 3 月前

ffmpeg.rar

合并视频和音频,A complete, cross-platform solution to record, convert and stream audio and video.
rar
发布资源于 3 月前

那雪

有谁,一声声在轻叩我的窗?一枕浓睡,恼他扰了初尝一杯淡酒的醇香,瞢腾醒了愔愔的睡眼,开门步入回廊,一晌心惊,是你,你何时在小檐下彷徨。你怎知?我在故乡的老地方,你怎知?我正煮一壶酒,慰藉我思惘,一袭羽裳,越过苍穹的屏障,捣碎痴想,在一城灯火下,沾在我的青丝上。我喜欢,任你偎着心房,聊起旧时光,一一与你细说尘中事,情深意长,我喜欢,任你在眼角徜徉,行向远方,寒梅在酝酿,与谁说那冰泪密藏一段香。半掬微凉,无端拂拭我的面庞,你时而勾住我的...
原创
31阅读
0评论
0点赞
发布博客于 3 月前

bilibili上爬取视频

一、bilibili视频的URL结构https://www.bilibili.com/video/BV1A4411R7wX?p=2URL+P(参数)二、编写程序输入URL和起始终止P # 输入bilibili视频的BV号 # bv = input('视频BV号:') bv = 'BV15v411k75j' url = 'https://www.bilibili.com/video/' + bv # 选择视频从第几p开始到第几p结束 .
原创
49阅读
0评论
0点赞
发布博客于 3 月前

word 文字型窗体域 加密破解

Step 1:打开Word文档——>另存为xml格式文档Step 2:用记事本或Notepad++打开xml格式文档Step 3:模糊搜索Password,查找到"w:UnprotectPassword"<w:documentProtection w:edit="read-only" w:formatting="on" w:enforcement="on" w:unprotectPassword="C561CC6B"/>将这段代码修改为<w:docu.
原创
64阅读
0评论
0点赞
发布博客于 4 月前

Word 文字型窗体域 VBA 编程

Step1:添加开发工具,为了实现VBA编程选项——>自定义功能去——>勾选开发工具Step2:开发工具——>插入文字型窗体域Step3:为所有窗体域添加唯一的书签Step3:VBA编程实现对应书签的文本设置Sub Main() Dim doc As Document Set doc = ThisDocument doc.FormFields("文字1").Result = "姓名" doc.FormFields(...
原创
136阅读
0评论
0点赞
发布博客于 4 月前

word 文字型窗体域 4609:字符串太长

在Microsoft Visual Basic中,输入如下函数:Sub WorkAround255Limit() ' Set Text1 form field to a unique string. Dim p1, p2, p3, p4, p5 p1 = "[1] Miao Y, Li J, Sun H. Multimodal Sparse Time–Frequency Representation for Underwater Acoustic Signals. I...
原创
81阅读
0评论
0点赞
发布博客于 4 月前

厦门大学LaTeX模板:页眉页脚设置

如果奇数页和偶数页页眉不同,首先设置文档是twoside\documentclass[twoside, doctor]{XMU-thesis-grd}页眉设置,推荐你用一下tex的fancyhdr 宏包,里面的\rightmark 命令来代表当前的节名,使用\leftmark 来代表当前的章名!%% fancyhdr 页眉页脚控制\RequirePackage{fancyhdr}% 空 页眉页脚\fancypagestyle{XMU@empty}{% \fancyhf{}}%
原创
453阅读
0评论
0点赞
发布博客于 5 月前

XMU-thesis-template.zip

根据2019年3月厦门大学研究生院公布的厦门大学研究生学位论文格式规范,和历届学长学姐传留下的资源,修改一份新版本《厦门大学研究生学位论文LaTeX模板》
zip
发布资源于 5 月前

厦门大学LaTeX毕业论文模板:中英文双目录

设置中文目录格式:\RequirePackage{titletoc}\titlecontents{chapter}[0pt]{\heiti \zihao{4}} {\bfseries\thecontentslabel\hspace{\ccwd}}{\bfseries} {\hspace{.5em}\titlerule*{.}\contentspage}\titlecontents{section}[2\ccwd]{\heiti \zihao{-4}} {\bfseries\
原创
196阅读
0评论
0点赞
发布博客于 5 月前

Mahalanobis Distance和Euclidean Distance

马氏距离是一种有效的多元距离度量标准,用于测量点(向量)与分布之间的距离。常用在多变量异常检测,高度不平衡的数据集分类应用中。本文解释为什么和何时用Mahalanobis Distance。Euclidean Distance欧几里德距离是两点之间常用的直线距离。如果两个点都在二维平面中(也就是说,数据集中有两个数字列()和()),则两个点(,)和(,)之间的欧式距离 )是:该公式可以扩展到所需的任意多个维度:当数据点可均等加权且彼此独立,欧几里得距离就可以正常工作。让我
原创
131阅读
0评论
0点赞
发布博客于 7 月前

Chirplet变换公式推导

证明:即
原创
230阅读
0评论
0点赞
发布博客于 7 月前

语音压缩:压缩率和比特率

原始语音信号:64 kbps = 8000 samples/second * 8bits/sample语音压缩中:2.4 kbps = 8000 samples/second * 0.3 bits/sample比特率为:kbps压缩率为:64/2.4:1=26.6:1
原创
185阅读
0评论
0点赞
发布博客于 7 月前

英文写作错误笔记二

Using (1), the potential was calculated[It is not clear who or what used (1).] Write instead,The potential was calculated by using (1),Using (1), we calculated the potential.“0.25,” not “.25.” “cm3,” not “cc.” “0.1 cm 0.2 cm,” not “0.1 0.2 cm2.”
原创
89阅读
0评论
0点赞
发布博客于 7 月前

英语写作错误笔记一

of EFP, of the ACT : of using the EFP, of using ACT; The STFT of a signal: The STFT;
原创
111阅读
0评论
0点赞
发布博客于 7 月前

延迟计算

波束形成的基本部分是计算阵列元素之间波到达时间的差异。 波束形成文献主要使用两种方法: 简单几何或矢量点积。 本此介绍使用两种方法如何计算到达阵列元素的平面波前与任意参考点之间的时间差。 当光源被认为距阵列很远时,通常假定为平面波。 基本几何计算延迟 下面的左图显示了沿x轴放置的单个麦克风。 这反映了一维数组的单个元素位置(右图)。 在这种设置中,平面波到达的角度是从y轴测量的; 角度为0°是宽边平面波,角度为±90°是端射。所有延迟测量均参考单个点(在这种情况下为轴原点)进行。 ...
翻译
300阅读
0评论
0点赞
发布博客于 8 月前

复合阵列

标准等距线性阵列具有取决于频率的波束方向图。随着频率的降低,主瓣的宽度会增加。 当试图对宽带信号进行空间滤波时,这是一个问题。 理想地,对于整个感兴趣的频率范围,恒定的主瓣宽度是理想的。解决此问题的简单方法是复合数组或嵌套数组。 这仅仅是组合标准阵列,每个标准阵列配置为为所需频率范围的子带提供空间滤波器。 如数组如下所示。这些阵列中每个阵列的波束模式如下图所示。 垂直轴上的频率(0至8kHz),水平轴上的角度(-90至90度)。 使用带通滤镜过滤掉阴影区域。对每个阵列的输出求和时,将产生
翻译
84阅读
0评论
0点赞
发布博客于 8 月前

3D坐标系统

下图显示了极坐标和笛卡尔坐标系。 这些轴的方向由适合于所有波束形成使用。直角坐标轴的方向似乎没有严格的标准。 决定用指向上方的Y轴,主要是为了简化与某些3D软件API(例如Java3D)的集成。注意:theta的计算使用atan2函数。 ...
翻译
77阅读
0评论
0点赞
发布博客于 8 月前

Delay Sum波束形成

引言 下图显示了两种不同麦克风设置的灵敏度模式。 左图显示了理想的全向麦克风的模式。 它表明麦克风对来自各个方向的信号具有相同的灵敏度。 右图显示了聚焦的灵敏度模式,旨在在单个方向上获得最大灵敏度,而所有其他方向的灵敏度都降低了,目的是创建一种灵敏度模式,从而能够“监听”来自单个方向的信号 。可以通过使用简单的线性麦克风阵列来实现波束形成。 这种阵列如下所示,在这种情况下,该阵列具有三个麦克风。 显而易见,波阵面的方向会影响信号到达阵列中每个阵元的时间。 当从-45°到达时,信号首先到达左手..
翻译
571阅读
0评论
0点赞
发布博客于 8 月前

优秀算法的paper

Linear Least-Squares ProblemsIterated Tikhonov regularization with a general penalty term
原创
74阅读
0评论
0点赞
发布博客于 8 月前

线性最小二乘法

1.线性最小二乘作为优化问题让和,假定。在这种情况下,极不可能存在向量,使得。作为替代目标,我们尝试找到尽可能逼近求解的。但是,我们必须先定义逼近概念。一种方法是尝试找到向量,使残差范数 的范数最小。也就是说,我们希望找到一个向量,使得同样,我们希望解决优化问题如果令,那么求解的点一阶必要条件是。为了利用这个性质,我们需要求梯度的表达式。对于,令则。观察,对于和接着,则有因此,如果解决,那么有或者。该等式称为线性最小二乘问题的正规方
原创
133阅读
0评论
0点赞
发布博客于 8 月前

《我想为你写诗》

我想为你写诗,以情碾的墨,把我的爱,写入你的心窝,小酌一壶春思,解我心头的渴,任爱你的心闯祸,陪你日日沦落。我想为你写诗,以烟火的韵调,谱写我一生承诺,锁住故事经过,古香的脉络,跌宕夏的江河湖泊,心念开一池荷,梦绕在乎的忐忑。我想为你写诗,以余生的魂魄,寄向我的明月,温热你的夜色,羞涩的辞藻,引诱秋水的潮起潮落,暗涌多情的漩涡,浸没红尘的你我。我想为你写诗,以回忆的味道,提起那年风华正茂,困住你的年少,平仄的沉浮,哪管冬雪婆娑,陪...
原创
126阅读
0评论
3点赞
发布博客于 8 月前

MATLAB Vs. Python Numpy

MATLAB Numpy 注释 a && b a and b 逻辑AND 1*i, 1*j, 1i, 1j 1j 复数 eps spacing(1) 1与最近浮点数的距离 ndims(a) ndim(a), a.ndim a的维数 numel(a) size(a), a.size a的元素个数 size(a) shape(a), a.shape a的形状 size(a,n...
原创
104阅读
0评论
0点赞
发布博客于 8 月前

一、声波波束求和

1. 声波传播和求和下图,一个简化的麦克风阵列波束形成设置。 从扬声器传播来的声波,将在不同的时刻到达麦克风,此属性是阵列空间滤波功能的本质。 模拟阵列的空间滤波性能时,有必要计算麦克风信号如何针对不同的信号源位置或角度求和。根据扬声器和麦克风的位置,可以首先计算波束传播的距离,然后对于给定的声速,波束离开扬声器并到达每个麦克风所花费的时间。上图显示了一个100Hz的“源波”,代表信号离开扬声器。 该图还显示了“麦克风1处的信号”和“麦克风2处的信号”。 可以清楚地看到源信号传播到麦克风
翻译
317阅读
0评论
2点赞
发布博客于 8 月前

2D高斯函数的可转向性

一阶方向导数的转向性可转向函数是二维高斯方程的一阶方向导数。尽管我们仅考虑高斯方程,但可转向性原则可以扩展到任何可微函数。为了简化,忽略高斯函数中缩放常数:先考虑一阶水平导数定义为:​目标是证明方向导数是可转向的:即,在固定的一组方向上从同一函数的线性组合以任何方向合成。在极坐标系中,和,则。水平方向导数可表示为:此函数是极性可分离的,即,它是径向()分量和角度()分量的乘积。用旋转函数,将代入上式​,使用基本的三角恒等式,则有:可知,上两式角度分量是不同的,
原创
151阅读
0评论
0点赞
发布博客于 8 月前

Inception V3 卷积层特征图

input_1 (299, 299, 3) -> Skipped. First dimension is not 1.conv2d_1 (1, 149, 149, 32)batch_normalization_1 (1, 149, 149, 32)activation_1 (1, 149, 149, 32)conv2d_2 (1, 147, 147, 32)batch_normalization_2 (1, 147, 147, 32)activation_2 (1, 147, 1...
原创
216阅读
0评论
0点赞
发布博客于 9 月前

Python:memory_profiler 检测内存消耗情况

运行mprof run example.py绘图mprof plot清理mprof cleanUnicodeDecodeError: 'gbk' codec can't decode byte 0x84 in position 1508: illegal multibyte sequence修改 memory_profiler.py,以utf-8编码打开文件:改为:
原创
1419阅读
0评论
0点赞
发布博客于 9 月前

MobileNet 卷积层特征图

input_1 (224, 224, 3) -> Skipped. First dimension is not 1.conv1_pad (1, 225, 225, 3)conv1 (1, 112, 112, 32)conv1_bn (1, 112, 112, 32)conv1_relu (1, 112, 112, 32)conv_dw_1 (1, 112, 112, 32)conv_dw_1_bn (1, 112, 112, 32)conv_dw_1_relu (1, 11...
原创
133阅读
0评论
0点赞
发布博客于 9 月前

imagesc y坐标轴指数显示

ax = gca;ax.YAxis.Exponent = 2;
原创
1144阅读
0评论
0点赞
发布博客于 9 月前

VGG16 卷积层结构和特征图

input_1 (224, 224, 3) -> Skipped. First dimension is not 1.block1_conv1 (1, 224, 224, 64)block1_conv2 (1, 224, 224, 64)block1_pool (1, 112, 112, 64)block2_conv1 (1, 112, 112, 128)block2_conv2 (1, 112, 112, 128)block2_pool (1, 56, 56, 128)bl...
原创
523阅读
0评论
0点赞
发布博客于 9 月前

ResNet50 卷积层和特征图

一般的ResNet50卷积层和特征图的w*h*dinput_1 (224, 224, 3) -> Skipped. First dimension is not 1.conv1_pad (1, 230, 230, 3) conv1_conv (1, 112, 112, 64) conv1_bn (1, 112, 112, 64) conv1_relu (1, 112, 112, 64) pool1_pad (1, 114, 114, 64) pool1_pool (1, 56, 5.
原创
1492阅读
0评论
2点赞
发布博客于 9 月前

keras model OMP: Info #**: KMP_AFFINITY: pid***

系统跑着跑着就崩溃了,不动了,可以如此设置一下:使用这些参数,可以达到最大150%的加速from keras import backend as Kimport tensorflow as tfNUM_PARALLEL_EXEC_UNITS = 6config = tf.ConfigProto(intra_op_parallelism_threads = NUM_PARALLEL_EXEC_UNITS, inter_op_parallelism_threads =..
原创
1003阅读
0评论
0点赞
发布博客于 9 月前

Linux anaconda3 下载、安装、配置、使用,卸载

下载获取anaconda网址,然后在服务器端wget 网址就行了。以清华镜像为例anaconda的所有版本的网址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/运行wget +下载对应版本的安装包如:wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.3.1-Linux-x86_64.sh安装进入下载文件目录,找..
原创
154阅读
0评论
0点赞
发布博客于 9 月前

anaconda3 配置

确定自己anaconda3安装位置D:\Anaconda3D:\Anaconda3\ScriptsD:\Anaconda3\Library\binD:\Anaconda3\Library\mingw-w64\bin
原创
147阅读
0评论
0点赞
发布博客于 9 月前

学习笔记一:JavaScript 简介

JavaScript 是一种脚本编写语言一种解释型语言 优点:编写或更改脚本非常简单。外部JavaScript文件有一个显著的优点,多个文档可以链接到同一个.js文件。因为浏览器会在缓存中保存这个文件,所以这样可以缩短显示网页所需的时间。 缺点:运行速度不是很快,不适合于复杂的工作,如图形处理在网页中添加JavaScript,可以使用一个类似的标签<script><script>标签告诉浏览器开始将其后的文本作为脚本来处理,而结尾处的<script>标签告诉
原创
56阅读
0评论
0点赞
发布博客于 9 月前

迁移学习

迁移学习(Transfer learning)是已学训练好的模型参数迁移到新的模型来帮助新模型训练。 为此,重用了先前构建的模型体系结构和大多数学习到的权重,然后使用标准的训练方法来学习剩余的,未重用的参数。训练后的神经网络在初始层中获取输入值,然后依次将信息向前馈送(同时进行迁移),直到至关重要的是,某些倒数第二层构造了输入的高层表示,可以更轻松地将其表示出来。 迁移为最终输出。 该模型...
原创
90阅读
0评论
0点赞
发布博客于 9 月前

一些好用的小程序

Gif录制软件—GifCam调节可视化视野,点击REC录制, 结束录制 还有gif图的编辑模式,可以增加文字,帧数剪辑等功能。colorcop取色程序DTLite映像制作工具光盘映像处理应用程序LaTeX公式编辑器mpMath微信公众号公式插件...
原创
82阅读
0评论
0点赞
发布博客于 9 月前

Cholesky和LU矩阵分解

1.Cholesky分解在线性代数中,矩阵分解是将矩阵分解为矩阵的乘积。有许多不同的矩阵分解。其中之一就是Cholesky分解。Cholesky分解是将Hermitian正定矩阵分解为下三角矩阵及其共轭转置的乘积。在求解线性方程组时,Cholesky分解的效率大约是分解的两倍。Hermitian正定矩阵的Cholesky分解是形式为的分解,其中是具有实对角线和正对角线项的下三角矩阵...
原创
236阅读
0评论
0点赞
发布博客于 10 月前

二维和一维peak峰值点检测

paws.txt数据:# Array shape: (4, 11, 14)0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 ...
原创
552阅读
0评论
0点赞
发布博客于 10 月前

信号特征:瞬时能量,过零率和排列熵

1.瞬时能量信号瞬时能量定义为:对于信号,在此信号上应用第个帧窗口:是窗长是帧移MATLAB代码​:function En = energy(x,wintype,winamp,winlen)%ENERGY Short-time energy computation.% y = ENERGY(X,WINTYPE,WINAMP,WINLEN) ...
原创
939阅读
4评论
0点赞
发布博客于 10 月前

深度学习:10种随机梯度下降优化算法

深度学习框架(例如:TensorFlow,Keras,PyTorch)中使用的常见梯度下降优化算法。梯度下降是一种用于寻找函数最小值的优化方法。它通常在深度学习模型中用于通过反向传播来更新神经网络的权重。VanillaSGD朴素随机梯度下降(Vanilla SGD)通过将当前权重减去其梯度的因子(即,学习率)来更新权重。​该方程式的变化通常被称为随机梯度下降优化器。 它们有3种...
原创
687阅读
0评论
1点赞
发布博客于 10 月前

OLS 正交最小二乘算法:稀疏信号重建

考虑线性系统寻找解决方案的形式为:如果数据向量在的列空间中,则上式具有精确解:如果具有零空间分量,我们将无法满足差分方程,因此我们放宽了要求,并要求尽可能小。这导致最小二乘问题的定义:一般最小二乘法解是有多种解决方案。 例如,提到的正规方程式:提供解决方案:正规方程的构造,右边的向量,显然在的列空间中。 实际上,我们给出了组合列向量的方案...
原创
383阅读
0评论
0点赞
发布博客于 10 月前

Mask RCNN 魔方颜色块识别

一、VGG标定数据集分别导出train和val数据集的标签文件:via_region_data.json二、制作数据集pl_data文件下创建train和val文件:三、下载预训练的模型mask_rcnn_coco.h5四、设置Mask RCNN模型1修改config分类主要是top、left和right三类别,需要修改config参数 NUM_CL...
原创
304阅读
0评论
0点赞
发布博客于 10 月前

Python matplotlib 出现底部显示不全

原因:matplotlib新版本,subplot.bottom默认为0.1但是电脑分辨率过低时,这个默认的0.1,导致绘图窗口不足,底部便被剪切了。解决:设置subplot.bottom为0.15plt.gcf().subplots_adjust(bottom=0.15)绘制这个混淆矩阵的例子为:def plot_confusion_matrix(cm, class...
原创
3152阅读
5评论
5点赞
发布博客于 1 年前

keras ModelCheckpoint

#创建一个权重文件保存文件夹logs#记录所有训练过程,每隔一定步数记录最大值tensorboard = TensorBoard(log_dir='"logs/"')checkpoint = ModelCheckpoint(log_dir + "best_weights.h5", monitor="val_loss", ...
原创
218阅读
0评论
0点赞
发布博客于 1 年前

keras 0.x 升级2.x 后,multimodel多模态融合层

Keras 0.xMerge-在Keras的早期版本中,用于合并来自2个或更多Sequential 模型的输入,并且在旧的Graph容器中也内部使用。 该层将模型作为layer参数,而不是tensor。 如果您想要自定义合并模式,则可以传递一个lambda作为mode参数。model1 = Sequential()model1.add(...)model2 = Sequentia...
原创
365阅读
0评论
0点赞
发布博客于 1 年前

Keras:concatenate和Concatenate区别

Concatenate 融合层. Concatenate 一个layer层作为输入 Concatenate 与Sequential模型一起用concatenate 融合函数. concatenate 一个tensor作为输入 concatenate 是Merge的包装器 concatenate 与Functional API一起用用Concatenate例子:left = S...
原创
1148阅读
0评论
3点赞
发布博客于 1 年前

Deeplab V3 训练自己遥感图像数据集

遥感图像数据集批量裁剪labelme标签标定数据集
原创
1360阅读
13评论
2点赞
发布博客于 1 年前

Python 遥感图像批量裁剪

配置参数的文件为Configure.pyclass Parameters(): def __init__(self): self.input_dir = '../data/raw' #大图 self.output_dir = '../data/img_data/'#裁剪输出 self.image_size = 512批量裁剪程序...
原创
1213阅读
0评论
1点赞
发布博客于 1 年前

labelme遥感数据集标定和批量转换

labelme的安装:conda create --name=labelme python=3.5 #考虑兼容性,这里我们选择Python3activate labelmeconda install pyqtpip install labelmelabelme的打开:终端直接输入labelme,就可以打开软件了批量转换 json–png:...
原创
921阅读
5评论
0点赞
发布博客于 1 年前

CommunicationSignal.rar

MATLAB实现批量txt文件转wav文件,去直流。 以通信信号为例,目录下的txt,执行程序后,直接转换为wav
rar
发布资源于 1 年前

噩梦之抗疫记

庚子年,正二月春,日暮之时,门庭外,寒凝大地山河,凄凄霜露零落一层层,草木尽无言。晚风肆动,动是异客情思忉忉、忧国之泪也。是夜,归之途,遇一魔物,予以啄食吾身,惴惴乎而不知何来之剑,挥之斩其头颅。吾长叹之,涊然汗出。忽而,其头颅与身躯速聚之,一化十,十变百,百生千,复数不可计之。恐恐然惟惧,不敢视,弃重剑而逃之。回首,群起穷追不舍,黑黑乎如乌云闭日,东西南北皆无路。一时急,跌倒在地,忽闻...
原创
591阅读
1评论
4点赞
发布博客于 1 年前

matplotlib Heatmap 绘制混淆矩阵第一行和最后一行减半

不正常显示:正常显示:原因:matplotlib版本3.1.1和3.1.2版本问题解决方法:plt.imshow(cm, interpolation='nearest', cmap=cmap)plt.ylim(len(cm) - 0.5, -0.5)或fig, ax = plt.subplots()im = ax.imshow(cm)a...
原创
878阅读
1评论
1点赞
发布博客于 1 年前

Python matplotlib查看版本

以管理员身份进入系统环境,输入命令:python进入python环境下,输入命令:import matplotlibmatplotlib.__version__
原创
4161阅读
0评论
0点赞
发布博客于 1 年前

时频重分配算法相关paper

Time-Frequency Reassignment and Synchrosqueezing: An overviewRecursive Time-Frequency Reassignment
原创
64阅读
0评论
0点赞
发布博客于 1 年前

module 'tensorflow' has no attribute 'set_random_seed'

module 'tensorflow' has no attribute 'set_random_seed'tf<2.0tf.set_random_seed(self._seed)tf2.0tf.random.set_seed()module 'tensorflow' has no attribute 'Session'tf<2.0import t...
原创
15801阅读
3评论
20点赞
发布博客于 1 年前

Python: ufunc 'bitwise_xor' not supported for the input types,....

错误:ufunc 'bitwise_xor' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe'' datamaster[i] = data[i+10000][...
原创
7275阅读
0评论
7点赞
发布博客于 1 年前

Raspberry pi:Failed building wheel for llvmlite

File "/tmp/pip-install-nqp_pomd/llvmlite/ffi/build.py", line 108, in main_posix "to the path for llvm-config" % (llvm_config,)) RuntimeError: /usr/bin/llvm-config-3.9 failed executing, please ...
原创
2449阅读
2评论
1点赞
发布博客于 2 年前

Debain:安装llvm

第一步:将LLVM Package Repository找到对应版本的。写入source.list 中sudo vi /etc/apt/sources.list写入:deb http://apt.llvm.org/xenial/ llvm-toolchain-xenial-3.9 main deb-src http://apt.llvm.org/xenial/ llvm-...
原创
371阅读
0评论
0点赞
发布博客于 2 年前

'Conda' is not recognized as internal or external command

正确安装了Anaconda3,依旧出现错误:'Conda' is not recognized as internal or external command'Python' is not recognized as internal or external command原因:On Windows, the PATH environment variable is no lon...
原创
880阅读
0评论
0点赞
发布博客于 2 年前

Linux firefox is already running

找到firefox的所有进程IDpidof firefox关闭所有进程:kill ****
原创
70阅读
0评论
0点赞
发布博客于 2 年前

latex ! Text line contains an invalid character.

意外遇见一个latex错误:! Text line contains an invalid character.原因:生成pdflatex时.aux等中间文件被截断; 来自latex源文件中一些不可见的字符,如转义字符,控制字符。解决方法删除所有中间文件,然后重新编译; 如果上一步出现问题,重新键入问题所在的行,并删除原始的行。或者重新写一个段落。...
原创
2059阅读
0评论
1点赞
发布博客于 2 年前

Latex tabular 表格

点击进入Latex表格在线生成器头文件:\usepackage{multirow}\usepackage{siunitx}\begin{table}[!htbp]\centering\caption{Specifications }\label{TAB_2}\begin{tabular}{m{2.7cm}<{\centering} m{5cm}<{\cente...
原创
887阅读
0评论
0点赞
发布博客于 2 年前

如何改变colorbar的宽度

Matlab的colorbar默认宽度太宽,设置如下:改变系数0.3(设置合适的宽度)c = colorbar;ax = gca;axpos = ax.Position;c.Position(3) = 0.3*c.Position(3);ax.Position = axpos;控制绘图与colorbar的距离:c = colorbar;ax = gca;ax.Posi...
原创
3464阅读
0评论
1点赞
发布博客于 2 年前

树莓派 安装TensorFlow2.0

uname -auname -march首先,用上面的命令查找Linux的系统版本是86,还是64然后,进入下面网址,选择合适的TensorFlow版本https://github.com/PINTO0309/Tensorflow-bin/#usagehttps://github.com/PINTO0309/TensorflowLite-bin...
原创
1726阅读
0评论
0点赞
发布博客于 2 年前

Linux 查看TensorFlow安装位置

CPU版本sudo pip3 show tensorflowGPU版本sudo pip3 show tensorflow-gpu
原创
879阅读
0评论
0点赞
发布博客于 2 年前

树莓派4 无线WiFi(无端口无显示屏)笔记

树莓派连接无线WiFi,总是Access denied用了很多无线网连接方式,已经出错可能原因: 无线WiFi需要身份验证,需要设置identity,可以在配置WiFi时,设置identity 将系统烧录SD卡后,新建wpa_supplicant.conf,设置如下信息(一定按照自己接入的网络配置每个属性)ctrl_interface=DIR=/var/run/wpa_su...
原创
1553阅读
0评论
2点赞
发布博客于 2 年前

win10自带远程访问树莓派

WIN10远程访问树莓派桌面首次启动树莓派,要下载Putty,通过ssh访问树莓派,执行命令行:sudo apt-get install xrdpwin10下,win+R打开如下界面进入远程连接输入用户名pi和密码raspberry就可以访问树莓派桌面了...
原创
533阅读
0评论
0点赞
发布博客于 2 年前

树莓派4 无显示器 安装笔记

硬件准备:树莓派 4B 读卡器(笔记本电脑有自带)+TF卡(San Disk) 电源线(手机线)下载系统文件注意:最新树莓派4代,请务必安装官网2019-6-20以后更新的Raspbian系统,以前的版本无法支持最新4代。官网下载地址:https://www.raspberrypi.org/downloads/raspbian/点击Download ZIP进行下载(推荐带...
原创
2000阅读
0评论
0点赞
发布博客于 2 年前

Python urllib 根据网址下载内容

urllib网址爬虫下载文件可以导入头文件urllib.request和urllib.parse:import urllib.request as urlRequestimport urllib.parse as urlParse对于GET请求方式的网址下载代码:url = "http://www.baidu.com" #一个例子网址# 打开url地址x = urlReq...
原创
68阅读
0评论
0点赞
发布博客于 2 年前

深度学习各种分类的综述

Image Classification[LeNet] [AlexNet] [ZFNet] [VGGNet] [SPPNet] [PReLU-Net] [DeepImage] [GoogLeNet / Inception-v1] [BN-Inception / Inception-v2] [Inception-v3] [Inception-v4] [Xception] [MobileNet...
转载
553阅读
0评论
1点赞
发布博客于 2 年前

Python plt 移除坐标轴,边框不可见

img = img.resize((input_image.shape[0], input_image.shape[1]), Image.LANCZOS)img = np.array(img)plt.imshow(img)plt.axis('off')fig = plt.gcf()fig.set_size_inches(1.0 / 3, 1.0 / 3) # dpi = 300, ...
原创
2692阅读
0评论
0点赞
发布博客于 2 年前

C# win7 VS2017 出现不能加载DLL“libtensorflow.dll”

我项目程序在Win10+VS2017环境下开发,最终程序需要打包迁移在Win7上运行,有些电脑安装成功,有些电脑总是报错如下:出现此问题的原因:请记住,VS中,nuget版本1.7.0以上TensorFlowSharp版本的libtensorflow.dll是x64,并且是使用AVX支持编译的(如果OS /处理器不支持AVX,您可能会收到HRESULT异常:0xC000001D...
原创
1041阅读
4评论
1点赞
发布博客于 2 年前

C# devexpress chartcontrol 代码控制X轴显示范围

先看一下没有限制范围和限制范围前后的效果,如下图 :接着是源代码:XYDiagram diagram = (XYDiagram)lineChart.Diagram;//坐标系设定diagram.AxisX.Title.Visibility = DevExpress.Utils.DefaultBoolean.True;diagram.AxisX.Title.Alignment ...
原创
2043阅读
0评论
1点赞
发布博客于 2 年前

C# 实现窗口界面里字体旋转

主要的核心代码:public class PublicFunction { public static PublicFunction _publicFunc =new PublicFunction(); public static PublicFunction CreateInstance() { retu...
原创
413阅读
0评论
0点赞
发布博客于 2 年前

远程连接服务器的SQL Server配置

1. 首先是要打开SQL Server 2016 配置管理器2. SQL Server 网络配置的MSSQLSERVER的协议和配置相关的客户端协议,开启TCP/IP3. 数据库默认的远程端口是 1433,但是不是安全的,可以手动更改端口,更待客户端协议的IP,本实例用1433端口这里需要找到最下边的 IPAll,然后修改端口,修改之后,重启数据库服务-------...
原创
366阅读
0评论
0点赞
发布博客于 2 年前

Aurora 在Word中自编号问题

\begin{align}\label{equ1}\begin{split}S_{c}(t,\omega)&=\int_{-\infty}^{\infty} s(\tau)g_{c}^{*}(\tau-t,\omega) \mathrm{d}\tau \\&=\int_{-\infty}^{\infty}s(\tau)h(\tau-t)\mathrm{e}^{j\frac...
原创
751阅读
0评论
1点赞
发布博客于 2 年前

VGG 图像打标签工具

两种方式:一种在线打标签,打标签的网页地址:http://www.robots.ox.ac.uk/~vgg/software/via/via.html一种离线打标签,打标签工具的下载地址:http://www.robots.ox.ac.uk/~vgg/software/via/本文采用离线打标签,过程如下:第一步:下载via-2.0.7工具包,主要针对图像打标签,视频标签,...
原创
1627阅读
0评论
0点赞
发布博客于 2 年前

QR-Code.zip

实现圆柱体二维码矫正 Python + OpenCV 二维码校正方式均是通过软件、梯形校正算法等对获取的非标准梯形二维码进行图像还原,然后读取二维码中的信息。但是这种方式的二维码图像还原方式均受一个识别角度阈值的限制:即当图1中的角度A超过某一角度(如45°时),摄像头获取的图像,通过二维码识别软件中的梯形校正算法无法将摄像头获取的梯形还原为标准的二维码图像,二维码识别软件就无法识别摄像头获取的图像。
zip
发布资源于 2 年前

TensorFlow 制作自己数据集时,xml转csv

TensorFlow 制作自己数据集时,xml转csv千篇一律,把我拐入坑里了。如果训练自己的数据集只有一个类别,用网络上的xml_to_csv,完全没有问题,源码如下:# -*- coding: utf-8 -*-import osimport globimport pandas as pdimport xml.etree.ElementTree as ETdef xml...
原创
769阅读
0评论
2点赞
发布博客于 2 年前

Python 批量图像大小resize (两级目录)

本程序适合训练集数据大小对齐主程序:align_dataset.pyfrom __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionfrom scipy import miscimport sysimport ossys.pat...
原创
539阅读
0评论
0点赞
发布博客于 2 年前

Python 批量图像ppm格式转为jpg (两级目录)

from PIL import Imageimport osinput_train_path="D:/work/PycharmPro/trafficsign/data/raw/Training"output_train_path = "D:/work/PycharmPro/trafficsign/data/train_data/"input_test_path="D:/work/Pyc...
原创
801阅读
0评论
0点赞
发布博客于 2 年前

Tensorflow 将训练的模型迁移到Android两种方式

本文主要针对pb文件,用Android TensorFlow API实现目标检测和识别,不需要NDK和CMake混合编程 编译c/c++文件只需要在Android项目模块的Module的build.gradle输入// Tensorflow compile 'org.tensorflow:tensorflow-android:1.13.1'由于很多处都可以查阅源代码,便不附加...
原创
1553阅读
0评论
0点赞
发布博客于 2 年前

win10 64位+CUDA 9.2+cuDNN v7.4.2. 安装

计算机-管理-系统工具-设备管理器-显示适配器安装NVIDIA 显卡驱动程序下载地址:http://www.nvidia.cn/Download/index.aspx?lang=cn查找自己电脑时候的驱动程序nvidia与cuda需要满足关系:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index...
原创
3333阅读
0评论
4点赞
发布博客于 2 年前

TensorFlow查看输入节点和输出节点名称

TensorFlow 定义输入节点名称input_name: with tf.name_scope('input'): bottleneck_input = tf.placeholder_with_default( bottleneck_tensor, shape=[batch_size, bottleneck_tensor_size], ...
原创
20980阅读
17评论
7点赞
发布博客于 2 年前

NAudio:MP3转WAV和Wav转Mp3

MP3转换为WAVusing Microsoft.Win32;using NAudio.Wave;using NLayer.NAudioSupport;using System.Windows;namespace NAudioDemo{ /// <summary> /// MainWindow.xaml 的交互逻辑 /// </summar...
转载
1610阅读
0评论
0点赞
发布博客于 2 年前

Deep Learning 数据集汇集

3D CAD模型:点云数据集http://modelnet.cs.princeton.edu/各类数据集:https://www.kaggle.com/datasets待后续补充
原创
471阅读
0评论
0点赞
发布博客于 2 年前

C# 错误:上下文中不存在Parallel 在Net standard

主要原因:System.Threading.Tasks.Parallel 受版本限制注意:建立类库的解决方案时,一般分为.Net standard and .Net Framework在Parallel 是4.0.0版本以上才可以用需要手动添加对System.Threading.Tasks.Parallel的引用可以使用nuget来获取此信息。或者,将以下内容添加到proje...
原创
136阅读
0评论
0点赞
发布博客于 2 年前

C# TablelayoutPanel 中单元格满填充

AutoHeight:True改为FalseDock: None改为Fill
原创
1777阅读
0评论
0点赞
发布博客于 2 年前