Apache Doris:深度优化与最佳实践

Apache Doris 性能优化与问题解决

引言

在前两篇文章中,我们已经介绍了 Apache Doris 的基本概念、安装配置、基础操作以及一些高级特性。本文将进一步深入探讨 Doris 的性能优化技巧、高级查询优化、数据建模最佳实践以及常见问题的解决方法。通过本文,读者将能够更好地理解和应用 Doris 的高级功能,从而提升系统的整体性能和稳定性。

性能优化技巧

1. 合理设置 Bucket 数

Bucket 数直接影响数据的分布和查询性能。合理的 Bucket 数可以避免数据倾斜,提高查询效率。

实践示例

假设我们有一个用户行为表 user_behavior,我们需要根据 user_id 进行分区和桶分配。

CREATE TABLE user_behavior (
    user_id INT,
    item_id INT,
    category_id INT,
    behavior STRING,
    ts TIMESTAMP
) ENGINE=OLAP
PARTITION BY RANGE (ts)
(PARTITION p1 VALUES LESS THAN ('2024-01-01'),
 PARTITION p2 VALUES LESS THAN ('2024-02-01'))
DISTRIBUTED BY HASH(user_id) BUCKETS 10
PROPERTIES ("replication_num" = "1");

2. 预聚合

预聚合可以显著提高查询性能,特别是在需要频繁进行聚合操作的场景中。

实践示例

假设我们需要频繁统计每天各个类别的销售数量,可以创建一个预聚合表 pre_aggregated_sales

CREATE TABLE pre_aggregated_sales (
    category_id INT,
    ts DATE,
    sales_count BIGINT SUM
) ENGINE=OLAP AGGREGATE KEY(category_id, ts)
DISTRIBUTED BY HASH(category_id) BUCKETS 10
PROPERTIES ("replication_num" = "1");

-- 插入预聚合数据
INSERT INTO pre_aggregated_sales
SELECT category_id, DATE(ts), COUNT(*) AS sales_count
FROM user_behavior
GROUP BY category_id, DATE(ts);

3. 索引优化

合理使用索引可以显著提高查询性能。Doris 支持多种索引类型,包括 Bitmap 索引和 Bloom Filter 索引。

Bitmap 索引

适用于基数较小的列,如性别、状态等。

CREATE TABLE bitmap_index_table (
    user_id INT,
    gender TINYINT BITMAP INDEX
) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软考和人工智能学堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值