引言
在前两篇文章中,我们已经介绍了 Apache Doris 的基本概念、安装配置、基础操作以及一些高级特性。本文将进一步深入探讨 Doris 的性能优化技巧、高级查询优化、数据建模最佳实践以及常见问题的解决方法。通过本文,读者将能够更好地理解和应用 Doris 的高级功能,从而提升系统的整体性能和稳定性。
性能优化技巧
1. 合理设置 Bucket 数
Bucket 数直接影响数据的分布和查询性能。合理的 Bucket 数可以避免数据倾斜,提高查询效率。
实践示例
假设我们有一个用户行为表 user_behavior,我们需要根据 user_id 进行分区和桶分配。
CREATE TABLE user_behavior (
user_id INT,
item_id INT,
category_id INT,
behavior STRING,
ts TIMESTAMP
) ENGINE=OLAP
PARTITION BY RANGE (ts)
(PARTITION p1 VALUES LESS THAN ('2024-01-01'),
PARTITION p2 VALUES LESS THAN ('2024-02-01'))
DISTRIBUTED BY HASH(user_id) BUCKETS 10
PROPERTIES ("replication_num" = "1");
2. 预聚合
预聚合可以显著提高查询性能,特别是在需要频繁进行聚合操作的场景中。
实践示例
假设我们需要频繁统计每天各个类别的销售数量,可以创建一个预聚合表 pre_aggregated_sales。
CREATE TABLE pre_aggregated_sales (
category_id INT,
ts DATE,
sales_count BIGINT SUM
) ENGINE=OLAP AGGREGATE KEY(category_id, ts)
DISTRIBUTED BY HASH(category_id) BUCKETS 10
PROPERTIES ("replication_num" = "1");
-- 插入预聚合数据
INSERT INTO pre_aggregated_sales
SELECT category_id, DATE(ts), COUNT(*) AS sales_count
FROM user_behavior
GROUP BY category_id, DATE(ts);
3. 索引优化
合理使用索引可以显著提高查询性能。Doris 支持多种索引类型,包括 Bitmap 索引和 Bloom Filter 索引。
Bitmap 索引
适用于基数较小的列,如性别、状态等。
CREATE TABLE bitmap_index_table (
user_id INT,
gender TINYINT BITMAP INDEX
)
Apache Doris 性能优化与问题解决

最低0.47元/天 解锁文章
7131

被折叠的 条评论
为什么被折叠?



