Dijkstra算法的一个普通实现

Dijkstra算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树。

Dijkstra算法的时间复杂度依赖于最小优先队列的具体实现,若使用数组,时间复杂度为O(V^2+E),V是顶点个数,E是边数,若使用最小堆,时间复杂度为O((V+E)lgV),若使用裴波那契堆,时间复杂度是O(VlgV+E)。

下面是一个使用数组的普通实现。

#include <iostream.h>
#include <limits.h> 

#define N 5

int Graph[N][N] = {
{0,3,INT_MAX,8,INT_MAX},
{3,0,5,INT_MAX,4},
{INT_MAX,5,0,4,7},
{8,INT_MAX,4,0,2},
{INT_MAX,4,7,2,0}
};
int Len[N] = {0,INT_MAX,INT_MAX,INT_MAX,INT_MAX};
int Pre[N];
void main()
{
int count=0,si=0;
int in[N] = {0};
while(count<N) 
 { 
 int tempmin;
 tempmin=INT_MAX; 
 for(int i=0;i<N;i++) 
 { 
 if(in[i]==0&&Len[i]<tempmin) 
 { 
 tempmin=Len[i]; 
 si=i; 
 } 
 } 
 in[si]=1; 
 count++; 
 for(i=1;i<N;i++) 
 { 
 if(in[i]==0&&tempmin<INT_MAX&&Graph[si][i]<INT_MAX&&(tempmin+Graph[si][i])<Len[i]) //不加tempmin<INT_MAX&&Graph[si][i]<INT_MAX条件,可能会造成tempmin+Graph[si][i]溢出
 { 
 Len[i]=tempmin+Graph[si][i]; 
 Pre[i] = si;
 } 
 }     
 } 


for(int i=0;i<N;i++)
{
int path[N] = {0};
if(Len[i]<INT_MAX)
{
int temp=i;
path[N-1] = i;
int j = N-2;
while(Pre[temp]!=0)
{
path[j] = Pre[temp]; 
temp = Pre[temp];
j--;
}
cout<<i<<":"<<Len[i]<<" "<<"0";
for(int k=0;k<N;k++)
if(path[k]!=0)
cout<<"->"<<path[k];
cout<<endl;
}
else
{
cout<<i<<":Unreachable!"<<endl;
}
}
}


Dijkstra算法是解决单源最短路径问题的经典算法,但是随着图问题规模的增大,算法时间复杂度也会呈指级增长,因此需要对其进行优化和改进。以下是两种Dijkstra算法的改进思路及对应的Python代码实现: 1.堆优化Dijkstra算法Dijkstra算法中,每次需要从未确定最短路径的节点中选取一个距离源点最近的节点进行松弛操作。如果使用线性查找的方式,时间复杂度为O(n^2),如果使用优先队列的方式,时间复杂度为O(mlogn),其中m为边数,n为节点。但是,如果使用堆优化的方式,可以将时间复杂度降为O(mlogn)。 ```python import heapq def dijkstra_heap(graph, start): # 初始化距离字典 dist = {node: float('inf') for node in graph} dist[start] = 0 # 初始化堆 heap = [(0, start)] while heap: # 弹出堆顶元素 (distance, node) = heapq.heappop(heap) # 如果当前节点已经处理过,跳过 if distance > dist[node]: continue # 遍历当前节点的邻居节点 for neighbor, weight in graph[node].items(): # 计算新的距离 new_distance = dist[node] + weight # 如果新的距离更短,更新距离字典和堆 if new_distance < dist[neighbor]: dist[neighbor] = new_distance heapq.heappush(heap, (new_distance, neighbor)) return dist ``` 2.双向Dijkstra算法 双向Dijkstra算法是一种优化Dijkstra算法的方式,它从源点和终点同时开始搜索,直到两个搜索路径相遇。这种算法时间复杂度为O(m^(2/3)),比普通Dijkstra算法时间复杂度O(mlogn)更快。 ```python def bidirectional_dijkstra(graph, start, end): # 初始化距离字典 forward_dist = {node: float('inf') for node in graph} backward_dist = {node: float('inf') for node in graph} forward_dist[start] = 0 backward_dist[end] = 0 # 初始化前向堆和后向堆 forward_heap = [(0, start)] backward_heap = [(0, end)] # 初始化前向节点集合和后向节点集合 forward_visited = set() backward_visited = set() while forward_heap and backward_heap: # 处理前向堆 (forward_distance, forward_node) = heapq.heappop(forward_heap) forward_visited.add(forward_node) # 如果当前节点已经在后向节点集合中,返回结果 if forward_node in backward_visited: return forward_dist[forward_node] + backward_dist[forward_node] # 遍历当前节点的邻居节点 for neighbor, weight in graph[forward_node].items(): # 计算新的距离 new_distance = forward_dist[forward_node] + weight # 如果新的距离更短,更新距离字典和堆 if new_distance < forward_dist[neighbor]: forward_dist[neighbor] = new_distance heapq.heappush(forward_heap, (new_distance, neighbor)) # 处理后向堆 (backward_distance, backward_node) = heapq.heappop(backward_heap) backward_visited.add(backward_node) # 如果当前节点已经在前向节点集合中,返回结果 if backward_node in forward_visited: return forward_dist[backward_node] + backward_dist[backward_node] # 遍历当前节点的邻居节点 for neighbor, weight in graph[backward_node].items(): # 计算新的距离 new_distance = backward_dist[backward_node] + weight # 如果新的距离更短,更新距离字典和堆 if new_distance < backward_dist[neighbor]: backward_dist[neighbor] = new_distance heapq.heappush(backward_heap, (new_distance, neighbor)) return float('inf') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值