lesson 4 An exciting trip

 

 

课文语音后续更新中...

关注公众号-更多资料领取哦...

lesson 4 中的语法

现在完成时

 

现在完成时的形式:助动词have + 实义动词的过去分词形式,一般我们用done来表达。比如have received/has been 这样的结构。如果是否定,我们用have not done sth. 这个结构。

 

现在完成时的使用场景:

 

1. 表达一种经验的累积,“做过”还是“没做过”,“做过几次”

 

My brother has never been abroad before. 我的弟弟从来没出过国。

I have not seen that film yet. 我还没看那部电影呢。

I have been to America three times. 我去过美国三次。

I've been there. 我也有过类似的感受。(用于安慰他人时)

 

2. 表达一种延续的状态,就是从过去某个时间点开始,一直保持的一种状态。

 

He has been there for six months. 他在那儿已经待了6个月了。

I've lived in Beijing since 2000. 我从2000年就一直住在北京了。

 

3. 强调某个动作刚刚发生或者已经发生。

 

I have just received a letter from my brother. 我刚刚收到了哥哥的一封信。

He has already visited a great number of different places. 他已经去过了很多地方。

 

现在完成时几个标志性的表达: never, yet, once, twice, three times, for, since, already, just.

原文

An exciting trip

I have just received a letter from my brother, Tim. He is in Australia. He has been there for six months. Tim is an engineer. He is working for a big firm and he has already visited a great number of different places in Australia. He has just bought an Australian car and has gone to Alice Springs, a small town in the centre of Australia. He will soon visit Darwin. From there, he will fly to Perth. My brother has never been abroad before, so he is finding this trip very exciting.

知识重点

exciting /ɪk'saɪtɪŋ/  adj. 令人兴奋的;使人激动的

excited /ɪk'saɪtɪd/ adj. 兴奋的;激动的;活跃的

an exciting film 一场跌宕起伏的电影

I'm so excited to see him! 要见到他了,我很兴奋!

receive /rɪ'siːv/  vt. 收到

receive a gift 收到礼物

receive an email 收到邮件

receive attention 得到关注

receive education 接受教育

accept /əkˈsept/ vt. 接受;承认(主观愿意)

I accepted an offer. 我接受了这份工作。

Please accept this gift. 请收下这份礼物。

firm /fɜːm/  n. 公司(专指一些提供服务类的公司;事务所)

law firm 律师事务所

consulting firm 咨询公司

accounting firm 会计师事务所

company /'kʌmp(ə)nɪ/ n. 公司(统称)

a great number of   许多

different places   很多地方

different ideas 各种各样的想法

different ways 各种方式

spring /sprɪŋ/   n. 泉水;春天

fly to   坐飞机去某地

abroad /ə'brɔːd/  adv. / adj. 在国外

be abroad 在国外

live abroad 住在国外

travel abroad 出国旅游

study abroad 出国留学

aboard /ə'bɔːd/ adv. 在飞机上/车上/船上

find sb./ sth. + adj.   觉得……怎么样

find this trip very exciting 觉得这趟旅行很兴奋

find this girl pretty 觉得这个女孩很好看

find the song beautiful 觉得这首歌很动听

 

开口脆

 

扫码关注

更多精彩

 

接下来是扩展部分哦

4-1.png

 

 

【拓展】暴虐新概念第二册 Lesson4 拓展

1⃣️ 看图说话

根据下面这张照片,你能否复述出本文的主要内容呢?

image.png

2⃣️发音小知识

 

👉Australia 中 s 后面的t不读/t/,读/d/,因为s后面的清辅音不送气。这一点我们昨天就学过了,还记得吗?

👉Australia 中最后一个 a 读/ə/,没有儿音,不卷舌。一定要记住,不看到 r 字母一定不要卷舌。

👉months 按理来说读音应该是/mʌnθs/,但是/θ/和/s/较劲时较不过,所以可以不发/θ/,直接读/mʌns/。cloths同理。

 

3⃣️学习方法分享

单词要怎么背?

 

👉能激活大脑记忆的单词往往是成串存在的——chunk(chunk)。不论在发音上还是意义上,单词的存在单位都是chunk,比如bread and butter就是一个chunk。积累的chunk越多,口语和写作时就越有话说。

👉当你的词汇量足够多时,可以借助英英词典,通过英文解释记单词,同时还能记住单词的应用场景。如果查单词只看翻译,只是点对点的翻译。

 

👉说到词典,最后就来介绍一些经典的好词典。

《柯林斯高阶英语学习词典》《麦克米伦高阶英语词典》《韦氏高阶英语词典》都是很棒的英英词典。

基础相对薄弱,看不懂英英词典的同学可以先用英汉双解词典,比如《剑桥高阶英汉双解词典》《剑桥高级英汉双解词典》

 

4⃣️ 今日拓展小视频,快点击观看,磨耳朵吧👀

 

 

 

 

 

【视频小解读】

今天课文中作者的哥哥在澳洲自驾旅行呢,不如我们也来看看澳洲的美景吧~

 

🌍Great Barrier Reef 大堡礁

🌍Great Ocean Road墨尔本大洋路

🌍Red Cliff Ayers Rock艾尔斯岩,又被称为乌卢鲁

🌍Cape Byron拜伦角

🌍Kakadu National Park卡卡杜国家公园

🌍Phillip Island菲利普岛

🌍Fraser Island弗雷泽岛

🌍Park “Blue Mountains”蓝山国家公园

🌍PINK salt lakes粉红湖

🌍Sydney Harbour悉尼港,又名杰克森港

🌍Tasmania塔斯马尼亚

 

 

image.png

 

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值