这还是与欧拉函数有关的,不过这次不是求一个,而是求多个,所以我们不能一个一个用求单个数的欧拉函数值的方法,需要用筛法求多个连续数的欧拉函数值。
如果你没有看过筛法求素数,那么建议先看一下筛法求素数,这将有助于理解这道题的算法思想。
后面给出的代码,会算出从2~n所有数的欧拉函数值,我们只需截取a~b范围内的欧拉函数值相加即可。
首先,需要声明一个数组,并需要全部初始化为0。然后从2~n中找出素数,让后找到素因子含该素数的所有数(当然是在n内),乘以(1-1/p),如此循环。其中需要处理一些细节,各位在看完代码后应该就能明白。最后提示一个细节,就是保存总数的变量类型应该为long long型。
代码(G++):
#include <cstdlib>
#include <iostream>
using namespace std;
int array[3000000];
int main(int argc, char *argv[])
{
int a,b,i,j;
long long count;
memset(array,0,sizeof(array));
for(i=2;i<3000000;i++)
{
if(!array[i])
{
for(j=i;j<3000000;j+=i)
{
if(!array[j]) array[j]=j;
array[j]=array[j]/i*(i-1);
}
}
}
while(cin>>a>>b)
{
count=0;
for(i=a;i<=b;i++) count+=array[i];
cout<<count<<endl;
}
system("PAUSE");
return EXIT_SUCCESS;
}
附上原题:
The Euler function
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Problem Description
The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very easy question: suppose you are given a, b, try to calculate (a)+ (a+1)+....+ (b)
Input
There are several test cases. Each line has two integers a, b (2<a<b<3000000).
Output
Output the result of (a)+ (a+1)+....+ (b)
Sample Input
3 100
Sample Output
3042