从零开始的机器学习
自己学习机器学习的学习过程
康娜喵
理论与工程,性能与外表,我全都要!
展开
-
【从零开始的机器学习2】——朴素贝叶斯和邮件分类
朴素贝叶斯和邮件分类一.朴素贝叶斯的数学基础二.公式1.贝叶斯公式2.朴素贝叶斯公式3.代码中的朴素贝叶斯①.思想②.拉普拉斯平滑三.实战——邮件分类1.说明2.代码流程3.代码实现4.完整代码四.后记 一.朴素贝叶斯的数学基础 首先我们需要了解以下几个数学的基础名词: 先验概率:通过已知的模型(原因)去推测结果的概率,比如:黑盒里有三个白球,七个红球,求事件A:摸出一个黑球的概率。记作P(A)。 条件概率:事件A在事件B已经发生的状态下,发生的概率,记作P(A|B)。 后验概率:通过已知的结果,去推测模型原创 2020-09-24 13:10:45 · 330 阅读 · 0 评论 -
【从零开始的机器学习1】——KNN和手写数字识别
KNN零.前言一.原理1.简述原理2.补充说明二.代码实现1.创建数据集2.使用KNN预测图片算法三.总结与反思 零.前言 又开一个坑,手写一些机器学习常用的函数的代码,以此深度了解机器学习框架背后的一些原理。 一.原理 1.简述原理 KNN的原理,简述就是: 向量化训练集和目标 预测目标与训练集中每一个成员的距离 选出训练集中与待预测的目标距离最小的K个成员 在这K个成员中,选出出现次数最多的那个成员,该成员就是我们的预测结果 2.补充说明 向量化是指:比如一张28 * 28像素的图片,我们可以给原创 2020-09-18 17:09:05 · 376 阅读 · 1 评论