

rcnn首先会做一个region proposal,也就是任意的找到一些疑似完整物体的区域,这一步是任意的,根据梯度信息找到一些边缘,然后就圈出来了。这一步会找到非常多的区域作为候选框,给接下来的分类提供素材。论文说的是找了两千多个
接着把那些候选框一个一个输入神经网络,算出特征
接着把算出的特征交给svm去做分类,得到分类与置信度。
最后每个类别在训练出四个向量,保证预测的时候特征这四个向量可以得到x,y,w,h,这样坐标的缩放和偏移量也就算出来了。

所谓的候选区域推荐其实就是根据梯度信息找到一些边界,然后选出一个个疑似完整的物体。 而RCNN的region proposal用的是selective search的方法,这种方法说来也简单,就是每两个相邻区域计算相似度。

如果相似度大于阈值就合并,接着循环,直到不能再合并为止。而一开始是每个像素点为一个区域所以这个过程就是由点逐步变大的过程。

这一步做完了,图中就会出现很多的候选框

最低0.47元/天 解锁文章
4906

被折叠的 条评论
为什么被折叠?



