目标检测-RCNN

在这里插入图片描述在这里插入图片描述
rcnn首先会做一个region proposal,也就是任意的找到一些疑似完整物体的区域,这一步是任意的,根据梯度信息找到一些边缘,然后就圈出来了。这一步会找到非常多的区域作为候选框,给接下来的分类提供素材。论文说的是找了两千多个

接着把那些候选框一个一个输入神经网络,算出特征

接着把算出的特征交给svm去做分类,得到分类与置信度。

最后每个类别在训练出四个向量,保证预测的时候特征这四个向量可以得到x,y,w,h,这样坐标的缩放和偏移量也就算出来了。
在这里插入图片描述
所谓的候选区域推荐其实就是根据梯度信息找到一些边界,然后选出一个个疑似完整的物体。 而RCNN的region proposal用的是selective search的方法,这种方法说来也简单,就是每两个相邻区域计算相似度。
在这里插入图片描述
如果相似度大于阈值就合并,接着循环,直到不能再合并为止。而一开始是每个像素点为一个区域所以这个过程就是由点逐步变大的过程。
在这里插入图片描述
这一步做完了,图中就会出现很多的候选框

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值