线性筛选素数法(O(n)复杂度)

               昨天有个SB给我讲了一个线性筛选素数法O(n)的复杂度,感觉很神奇,自己看了看,

确实牛b的样子。其实它不像一般的筛选素数法会重复操作标记非素数,此方法不会重复

之行操作,遍历只需一次就行。

void get_prime()
{
    int num = 0 ;
    memset(vis,false,sizeof(vis));
    for(int i = 2 ; i < n ; i ++)
    {
        if(!vis[i]) prime[num++] = i ;
        for(int j = 0; j<num && i*prime[j]<n ; j ++)
        {
            vis[i*prime[j]] = true ;
            if(i % prime[j] == 0) break ;
        }
    }
}
/*可以用均摊分析的方法来分析算法的复杂度,由于每
个合数都唯一的被它的最小素因子筛一次,而每个合
数的最小素因子都是唯一的,总复杂度是O(n)*/

一般 筛选素数法:

void get_prime()
{
    int num = 0 ;
    memset(vis,false,sizeof(vis));
    for(int i = 2 ; i < n ; i ++)
    {
        if(!vis[i]) 
        {
            prime[num++] = i ;
            for(int j = 2*i ; j < n ; j += i)
            {
                vis[j] = true ;
            }
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值