http://acm.hdu.edu.cn/showproblem.php?pid=4288
开始的时候,果断TLE,做的方法是,线段树上仅仅维护%5==3的坐标,比如1 2 3 4 5 6 7 如果删除第三个数,就将3,6的位置全+1,就是向右偏移以为,但是求和还是很慢,所以即使10秒,还是TLE。。。
正确做法:
1、节点内维护sum[0...4]分别代表区间内%5==i的和
2、结点维护点的个数,cnt
3、离散化处理,然后每次插入时,经过的结点cnt+1或-1,叶子节点Sum[0]就是节点值,父节点的sum这样维护了:很不错的方法
void pushup(int rt)
{
for(int i=0;i<5;i++)
nodes[rt].sum[i]=nodes[ls(rt)].sum[i]+nodes[rs(rt)].sum[ ((i-nodes[ls(rt)].cnt)%5+5)%5 ];
}
4、离散化+离线,可以使删除数比较方便,不用map
新学会的离散化方法:
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
tmp[num++]=a[i];
}
sort(tmp,tmp+num);
num=unique(tmp,tmp+num)-tmp;
//然后可以这样查询位置
int pos=lower_bound(tmp,tmp+num,a[i])-tmp;
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
using namespace std;
#define IN(s) freopen(s,"r",stdin)
#define CL(a,b) memset(a,b,sizeof(a))
#define ll long long
#define ls(rt) rt*2
#define rs(rt) rt*2+1
const int MAXN = 1e5+100;
struct Node{
int l,r;
ll sum[5]; //
int cnt; //区间内数的个数
}nodes[MAXN*4];
int a[MAXN],n,tmp[MAXN];
char op[MAXN][6];
void build(int rt,int l,int r)
{
nodes[rt].l=l;
nodes[rt].r=r;
nodes[rt].cnt=0;
CL(nodes[rt].sum,0);
if(l==r)return;
int mid=(l+r)/2;
build(ls(rt),l,mid);
build(rs(rt),mid+1,r);
}
void pushup(int rt)
{
for(int i=0;i<5;i++)
nodes[rt].sum[i]=nodes[ls(rt)].sum[i]+nodes[rs(rt)].sum[ ((i-nodes[ls(rt)].cnt)%5+5)%5 ];
}
void update(int rt, int pos, int d, int flag)
{
nodes[rt].cnt+=flag;
if(nodes[rt].l == nodes[rt].r)
{
nodes[rt].sum[0]+=d;
return;
}
if(pos<=nodes[ls(rt)].r)update(ls(rt),pos,d,flag);
else update(rs(rt),pos,d,flag);
pushup(rt);
}
int main()
{
//IN("hdu4288.txt");
int num;
while(~scanf("%d",&n))
{
num=0;
for(int i=0;i<n;i++)
{
scanf("%s",op[i]);
if(op[i][0]!='s')
{
scanf("%d",&a[i]);
tmp[num++]=a[i];
}
}
sort(tmp,tmp+num);
num=unique(tmp,tmp+num)-tmp;
build(1,1,num);
for(int i=0;i<n;i++)
{
int pos=lower_bound(tmp,tmp+num,a[i])-tmp;
if(op[i][0] == 'a')update(1,pos,a[i],1);
if(op[i][0] == 'd')update(1,pos,-a[i],-1);
if(op[i][0] == 's')printf("%I64d\n",nodes[1].sum[2]);
}
}
return 0;
}