***Leetcode 4 Median of Two Sorted Arrays

https://leetcode.com/problems/median-of-two-sorted-arrays/

非常不错的题。

最不济是可以想到log(m)*log(n)的做法的:

在第一个数组二分答案,然后再另一个数组二分,当然也有一些边界问题处理

一直盯着log(n+m) 不知道怎么回事,因为貌似一合并就会O(n+m)

然后看了题解,,,,,

把问题转化为findKthNum  ,  每次去掉一部分区间:

//
//  main.cpp
//  Search Insert Position
//
//  Created by zengwei on 15/12/22.
//  Copyright (c) 2015年 zengwei. All rights reserved.
//

#include <iostream>
#include <string>
#include <vector>

using namespace std;

/*class Solution {
public:
    int searchInsert(vector<int>& nums, int target) {
        int pos = lower_bound(nums.begin(), nums.end(), target) - nums.begin();
        return pos;
    }
};*/

/*class Solution {
public:
    int searchInsert(vector<int>& nums, int target) {
        int low = 0, high = (int)nums.size()-1;
        if(nums[high] < target ) return (int)nums.size();
        if(nums.size() && nums[0] >= target) return 0;
        int ans = 0;
        while (low < high) {
            int mid = (low+high) >> 1;
            ans = mid;
            if(nums[mid] == target) {
                ans = mid;
                break;
            }
            else {
                if(nums[mid] > target) {
                    high = mid-1;
                } else {
                    low = mid+1;
                    ans = low;
                }
            }
        }
        return ans;
    }
};*/

/*class Solution {
public:
    int searchInsert(vector<int>& nums, int target) {
        int low = 0, high = nums.size()-1;
        while (low <= high) { //here <= or = is important.
            int mid = (low+high) >> 1;
            if(nums[mid] == target) {
                low = mid;
                break;
            }
            else {
                if(nums[mid] > target) {
                    high = mid-1;
                } else {
                    low = mid+1;
                }
            }
        }
        return low; // here low=high+1, it means low point to the value that a little bigger than ..
        // and if there is a target in the array, it will break the loop
    }
};*/

/*class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        //if()
        int pos1 = lower_bound(nums1.begin(), nums1.end(), nums1.size()/2) - nums1.begin();
        int len1=nums1.size(),len2=nums2.size();
        int cnt = len1+len2;
        int loop = 1;
        int tar , ans;
        while(cnt != (len1+len2)/2 &&
              (len1|len2)) {
            if(loop%2) {
                if(loop == 1) tar = nums1[len1-1];
                else tar = nums1[len1/2];
            } else {
                tar = nums2[len2/2];
            }
            cnt = lower_bound(nums1.begin(), nums1.begin()+len1, tar) - nums1.begin()+1;
            cnt += lower_bound(nums2.begin(), nums2.begin()+len2, tar) - nums2.begin();
            if(loop%2) {
                len1 /= 2;
                ans = nums1[len1];
            } else {
                len2 /= 2;
                ans = nums2[len2];
            }
            loop++;
        }
        return ans;
    }
};*/
/*
 
 */
class Solution {
public:
    double findKthNum(vector<int>& nums1, vector<int>& nums2, int k) {
        if(nums1.size() > nums2.size()) return findKthNum(nums2, nums1, k);
        if(nums1.size() == 0)return nums2[k-1];
        if(k == 1)return min(nums1[0], nums2[0]);
        int ptr1 = min((int)nums1.size(), k/2), ptr2 = k-ptr1;
        
        if(nums1[ptr1-1] < nums2[ptr2-1]) {
            vector<int> vec (nums1.begin()+ptr1,nums1.end());
            return findKthNum(vec, nums2, k-ptr1);
        } else  if(nums1[ptr1-1] > nums2[ptr2-1]) {
            vector<int> vec (nums2.begin()+ptr2, nums2.end());
            return findKthNum(nums1, vec, k-ptr2);
        } else {
            return nums1[ptr1-1];
        }
        
    }
    
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int total = nums1.size() + nums2.size();
        if(nums1.size() == 0) {
            return nums2.size()%2 ? nums2[nums2.size()/2] :(nums2[(nums2.size()/2)] + nums2[nums2.size()/2-1])/2.0;
        }
        if(nums2.size() == 0) {
            return nums1.size()%2 ? nums1[nums1.size()/2] : (nums1[nums1.size()/2] + nums1[nums1.size()/2-1])/2.0;
        }
        if(total%2) {
            return findKthNum(nums1, nums2, (total/2)+1);
        } else {
            return (findKthNum(nums1, nums2, total/2) + findKthNum(nums1, nums2, total/2+1))*1.0/2.0;
        }
    }
};


int main(int argc, const char * argv[]) {
    int n, m,in;
    while(cin >> n >> m) {
        vector <int> nvec;
        vector <int> mvec;
        for(int i=0;i<n;i++) {
            cin >> in;
            nvec.push_back(in);
        }
        for(int i=0;i<m;i++) {
            cin >> in;
            mvec.push_back(in);
        }
        Solution s;
        cout << s.findMedianSortedArrays(nvec, mvec) << endl;
    }
    return 0;
}

class Solution {
public:


    // double findKth(vector<int>& nums1, int l1, int r1, vector<int>& nums2, int l2, int r2, int k) {
    //     if(r1 < l1) {
    //         int pos = k - r1 - r2;
    //         return nums2[pos];
    //     }
    //     if(r2 < l2) {
    //         int pos = k - r1 - r2;
    //         return nums1[pos];
    //     }
    //     if(k == 0) {
    //         if(nums1[l1] < nums2[l2]) return nums1[l1];
    //         else return nums2[l2];
    //     } 
    //     // k > 0
    //     if(l1 + l2 == k) return nums1[l1] < nums2[l2] ? nums1[l1]:nums2[l2];
    //     // k - l1 - l2
    //     int mid = (k - l1 - l2) / 2;
    //     int lp, lv, rp, rv;
    //     if(l1 + mid > r1) {
    //         lp = r1;
    //         lv = nums1[r1];
    //     } else {
    //         lp = l1 + mid;
    //         lv = nums1[lp];
    //     }
    //     if(l2+mid > r2) {
    //         rp = r2;
    //         rv = nums2[rp];
    //     } else {
    //         rp = l2+mid;
    //         rv = nums2[rp];
    //     }
    //     if(lv < rv) {
    //         return findKth(nums1, lp+1, r1, nums2, l2, r2, k);
    //     } else {
    //         return findKth(nums1, l1, r1, nums2, rp+1, r2, k);
    //     }
    // }

    double findKth(vector<int>& nums1, int l1, int r1, vector<int>& nums2, int l2, int r2, int k) {
        if(r1 - l1 > r2 - l2) return findKth(nums2, l2, r2, nums1, l1, r1, k);
        // int pos = k - r1-1 ;
        if(r1 - l1 + 1 == 0) { 
            return nums2[l2 + k-1]; // check
        }
        if(k == 1) return min(nums1[l1], nums2[l2]);
        int idx1 = min(r1-l1+1, k/2 )-1, idx2 = k -  min(r1-l1+1, k/2 ) - 1 ;
        // int idx1 = min(r1-l1+1, k/2 )-1, idx2 = min(r2-r1+1, k/2)-1 ;
        if(nums1[l1 + idx1] <= nums2[l2 + idx2]) {
            return findKth(
                nums1, l1 + idx1+1, r1, nums2, l2, r2, k-idx1-1
            );
        } else {
            return findKth(
                nums1, l1, r1, nums2, l2 + idx2+1, r2, k-idx2-1
            );
        }
    }

    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int sz = nums1.size() + nums2.size();
        // if(nums1.size() < nums2.size() ) swap(nums1, nums2);
        // if(nums2.size() == 0) {
        //     if(nums1.size() == 1) return nums1[0];
        //     return nums1.size()%2 ? nums1[sz/2-1] : (nums1[sz/2]);
        // }
        
        if(sz%2) {
            return findKth(nums1, 0, nums1.size()-1, nums2, 0, nums2.size()-1, (sz)/2+1);
        } else {
            // double a = findKth(nums1, 0, nums1.size()-1, nums2, 0, nums2.size()-1, (sz)/2);
            // double b = findKth(nums1, 0, nums1.size()-1, nums2, 0, nums2.size()-1, (sz)/2+1) ;
            // // cout << "a:" << a << " b:" << b << endl;
            // return (double)(a+b)/2;
            return ( findKth(nums1, 0, nums1.size()-1, nums2, 0, nums2.size()-1, sz/2) + findKth(nums1, 0, nums1.size()-1, nums2, 0, nums2.size()-1, sz/2+1) )/2;
        }
    }
};

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值