hdu1317 XYZZY

带负权图 bellman判环

为什么要循环V-1次?
答:因为最短路径肯定是个简单路径,不可能包含回路的,
如果包含回路,且回路的权值和为正的,那么去掉这个回路,可以得到更短的路径
如果回路的权值是负的,那么肯定没有解了


#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#define inf 0x3f3f3f3f
#define ll __int64
using namespace std;

struct node
{
    int u,v;
}e[10010];

int cnt,reach[110][110],w[110],n,d[110];

void floyd()
{
    int i,j,k;
    for(i=1;i<=n;i++)
    {
        for(j=1;j<=n;j++)
        {
            for(k=1;k<=n;k++)
            {
                reach[j][k]=reach[j][k]||(reach[j][i]&&reach[i][k]);
            }
        }
    }
}

int bellman()
{
    int i,j,u,v;
    for(i=1;i<=n;i++)
        d[i]=-1000000000;
    d[1]=100;
    for(i=0;i<n-1;i++)
    {
        for(j=0;j<cnt;j++)
        {
            u=e[j].u;
            v=e[j].v;
            if(d[u]+w[v]>d[v]&&d[u]+w[v]>0)
            {
                d[v]=d[u]+w[v];
            }
        }
    }
    for(i=0;i<cnt;i++)
    {
        u=e[i].u;
        v=e[i].v;
        if(d[u]+w[v]>d[v]&&d[u]+w[v]>0)
        {
            if(reach[v][n])
                return 1;
        }
    }
    return d[n]>0;
}

int main()
{
    int i,m,a;
    while(scanf("%d",&n)&&n!=-1)
    {
        memset(reach,0,sizeof reach);
        memset(w,0,sizeof w);
        cnt=0;
        for(i=1;i<=n;i++)
        {
            scanf("%d%d",&w[i],&m);
            while(m--)
            {
                scanf("%d",&a);
                reach[i][a]=1;
                e[cnt].u=i;
                e[cnt++].v=a;
            }
        }
        floyd();
        if(reach[1][n]==0)
        {
            printf("hopeless\n");
            continue;
        }
        if(bellman())
            printf("winnable\n");\
        else printf("hopeless\n");

    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值