poj1659 Frogs' Neighborhood

给n个点,以及每个点的度,求一个可以满足的图。

额正解那个算法没有细看,感觉差不多的。

简单想想,分析一下样例就可以判断出无解的条件,

将点按度数从大到小排序,从大的开始处理,依次与后面点相连,

如果连到后面点的度数已经是0了,或者到最后一个点了这个点还没有连完则无解。


#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<iostream>
#include<algorithm>
#define inf 0x3f3f3f3f
using namespace std;

struct node
{
    int w,id;
}s[15];
int vis[15][15];

bool cmp(node a,node b)
{
    return a.w>b.w;
}

int main()
{
    int T,p,i,j,n,cnt,flag;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        cnt=0;
        for(i=0;i<n;i++)
        {
            scanf("%d",&s[i].w);
            s[i].id=i;
            cnt+=s[i].w;
        }
        if(cnt&1)
        {
            printf("NO\n");
            continue;
        }
        memset(vis,0,sizeof vis);
        flag=1;
        while(1)
        {
            sort(s,s+n,cmp);
            if(s[0].w==0) break;
            cnt=0;i=1;
            while(1)
            {
                if(i==n)
                {
                    flag=0;
                    break;
                }
                if(vis[s[i].id][s[0].id])
                {
                    i++;
                    continue;
                }
                if(s[i].w==0)
                {
                    flag=0;
                    break;
                }
                vis[s[i].id][s[0].id]=vis[s[0].id][s[i].id]=1;
                s[i].w--;
                cnt++;
                if(cnt==s[0].w) break;
                i++;
            }
            if(!flag) break;
            s[0].w=0;
        }
        if(!flag)
            printf("NO\n");
        else
        {
            printf("YES\n");
            for(i=0;i<n;i++)
            {
                for(j=0;j<n-1;j++)
                    printf("%d ",vis[i][j]);
                printf("%d\n",vis[i][j]);
            }
        }
        if(T) puts("");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值