hdu4948 Kingdom

题意:有n个城市,任意两点之间有且仅有一条有向边。要求输出一种建造城市的顺序,使得之前已经建造的城市可以到达当前建造的城市,且至多经过两条边。


首先我们可以证明,这种方案是肯定存在的,

因为在一个满足题意的图中,入度最大的点一定是其他点在两步之内可达的。那么这个点就最后输出。

上面的结论是为什么呢。。题解告诉我们用反证法证明,

若u结点是当前图中入度最大的结点,假设v点存在该路径v->a->b->u,

由于u是入度最大的结点,那么v 不可能连到u以及 b或者与u直接相连的点(不然v就可以两步到达u了),

由于两点间有一条有向边,v连布到他们,那么他们到v一定有边,既v的入度至少是 u+指向u的点,既v的入度大于u的,这里矛盾了。

所以我们可以知道,在任何一个符合题意的图中,都可以知道最后输出的点,

我们每找到一个点,就标记,把与该点相连的边删去。这样找完了倒序输出就i可以了。


#include <iostream>
#include <cstdlib>
#include <cstring>
#include <string>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#define inf 0x3f3f3f3f
#pragma comment(linker, "/STACK:16777216")
#define eps 1e-6
#define ll long long
using namespace std;

const int maxn=505;

int n,in[maxn],vis[maxn];
char s[maxn][maxn];

int main()
{
    int i,j;
    while(~scanf("%d",&n)&&n)
    {
        memset(in,0,sizeof in);
        for(i=1;i<=n;i++)
        {
            scanf("%s",s[i]+1);
            for(j=1;j<=n;j++)
                if(s[i][j]=='1')
                    in[j]++;
        }
        vector<int> ans;
        memset(vis,0,sizeof vis);
        int maxin,p,flag=1;
        while(flag)
        {
            flag=0,maxin=-1,p=0;
            for(i=1;i<=n;i++)
            {
                if(!vis[i]&&maxin<in[i])
                {
                    flag=1;
                    maxin=in[i];
                    p=i;
                }
            }
            if(flag)
            {
                vis[p]=1;
                ans.push_back(p);
                for(i=1;i<=n;i++)
                {
                    if(i==p) continue;
                    if(s[p][i]=='1') in[i]--;
                }
            }
        }
        printf("%d",ans[ans.size()-1]);
        for(i=ans.size()-2;i>=0;i--)
            printf(" %d",ans[i]);
        puts("");
    }
    return 0;
}

/*
4
0111
0011
0001
0000

4
0100
0010
1001
1100

1 2 3 4
3 4 1 2
*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值